Spread complexity and quantum chaos for periodically driven spin chains
- URL: http://arxiv.org/abs/2405.16182v2
- Date: Tue, 3 Sep 2024 15:46:50 GMT
- Title: Spread complexity and quantum chaos for periodically driven spin chains
- Authors: Amin A. Nizami, Ankit W. Shrestha,
- Abstract summary: We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure.
We find distinctive behaviour of the Arnoldi coefficients and spread complexity for regular vs. chaotic dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of quantum states under dynamical evolution can be investigated by studying the spread with time of the state over a pre-defined basis. It is known that this complexity is minimised by choosing the Krylov basis, thus defining the spread complexity. We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure. The main illustrative quantum many-body model we use is the periodically kicked Ising spin-chain with non-integrable deformations, a chaotic system where we look at both local and non-local interactions. In the various cases we find distinctive behaviour of the Arnoldi coefficients and spread complexity for regular vs. chaotic dynamics: suppressed fluctuations in the Arnoldi coefficients as well as larger saturation value in spread complexity in the chaotic case. We compare the behaviour of the Krylov measures with that of standard spectral diagnostics of chaos. We also study the effect of changing the driving frequency on the complexity saturation.
Related papers
- Spread complexity in saddle-dominated scrambling [0.0]
We study the spread complexity of the thermofield double state within emphintegrable systems that exhibit saddle-dominated scrambling.
Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of emphchaotic systems.
arXiv Detail & Related papers (2023-12-19T20:41:14Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Krylov complexity and chaos in quantum mechanics [0.0]
We numerically evaluate Krylov complexity for operators and states.
We find a clear correlation between variances of Lanczos coefficients and classical Lyapunov exponents.
Our work provides a firm bridge between Krylov complexity and classical/quantum chaos.
arXiv Detail & Related papers (2023-05-26T06:32:45Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Krylov Localization and suppression of complexity [0.0]
We investigate Krylov complexity for the case of interacting integrable models at finite size.
We find that complexity saturation is suppressed as compared to chaotic systems.
We demonstrate this behavior for an interacting integrable model, the XXZ spin chain.
arXiv Detail & Related papers (2021-12-22T18:45:32Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Aspects of The First Law of Complexity [0.0]
We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed.
Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit.
arXiv Detail & Related papers (2020-02-13T21:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.