Diagnosing chaos with projected ensembles of process tensors
- URL: http://arxiv.org/abs/2502.13930v1
- Date: Wed, 19 Feb 2025 18:06:07 GMT
- Title: Diagnosing chaos with projected ensembles of process tensors
- Authors: Peter O'Donovan, Neil Dowling, Kavan Modi, Mark T. Mitchison,
- Abstract summary: We introduce the projected process ensemble an ensemble of pure states of a process tensor in a given basis of local interventions, and use to define increasingly more fine-grained probes of quantum chaos.
We discover characteristic entanglement structures within the ensemble that can distinguish sharply chaotic from integrable dynamics, overcoming deficiencies of the quantum dynamical and entemporaltropies.
Our work elucidates the fingerprints of chaos in interacting quantum processes, and provides a unified framework for analyzing unitary and monitored many-body dynamics.
- Score: 0.22499166814992436
- License:
- Abstract: The process tensor provides a general representation of a quantum system evolving under repeated interventions and is fundamental for numerical simulations of local many-body dynamics. In this work, we introduce the projected process ensemble, an ensemble of pure output states of a process tensor in a given basis of local interventions, and use it to define increasingly more fine-grained probes of quantum chaos. The first moment of this ensemble encapsulates numerous previously studied chaos quantifiers, including the Alicki-Fannes quantum dynamical entropy, butterfly flutter fidelity, and spatiotemporal entanglement. We discover characteristic entanglement structures within the ensemble's higher moments that can sharply distinguish chaotic from integrable dynamics, overcoming deficiencies of the quantum dynamical and spatiotemporal entropies. These conclusions are supported by extensive numerical simulations of many-body dynamics for a range of spin-chain models, including non-interacting, interacting-integrable, chaotic, and many-body localized regimes. Our work elucidates the fingerprints of chaos on spatiotemporal correlations in quantum stochastic processes, and provides a unified framework for analyzing the complexity of unitary and monitored many-body dynamics.
Related papers
- Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Approximating Quantum Lyapunov Exponents in Quantum Kicked Rotor [0.0]
We study quantum chaos by focusing on the evolution of initially close states in the dynamics of the Quantum Kicked Rotor (QKR)
We propose a novel measure, the Quantum Lyapunov Exponent (QLE), to quantify the degree of chaos in this quantum system, analogous to its classical counterpart.
arXiv Detail & Related papers (2023-07-04T03:47:42Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Embedding semiclassical periodic orbits into chaotic many-body
Hamiltonians [0.05524804393257919]
We present a general construction that embeds a desired periodic orbit into a family of non-integrable many-body Hamiltonians.
By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics.
arXiv Detail & Related papers (2023-03-02T15:40:47Z) - Entangled multiplets and unusual spreading of quantum correlations in a
continuously monitored tight-binding chain [0.0]
We analyze the dynamics of entanglement in a paradigmatic noninteracting system subject to continuous monitoring of the local densities.
Results shed new light onto the behavior of correlations in quantum dynamics and further show that these may be enhanced by a (weak) continuous monitoring process.
arXiv Detail & Related papers (2022-06-15T20:36:08Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Unpredictability and entanglement in open quantum systems [0.0]
We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
arXiv Detail & Related papers (2021-06-14T18:00:12Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.