論文の概要: Detecting Adversarial Data via Perturbation Forgery
- arxiv url: http://arxiv.org/abs/2405.16226v2
- Date: Sat, 24 Aug 2024 15:00:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:27:05.671000
- Title: Detecting Adversarial Data via Perturbation Forgery
- Title(参考訳): 摂動フォージェリによる逆データ検出
- Authors: Qian Wang, Chen Li, Yuchen Luo, Hefei Ling, Ping Li, Jiazhong Chen, Shijuan Huang, Ning Yu,
- Abstract要約: 逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布の摂動,スパースマスク生成,擬似対向データ生成を含む摂動フォージェリを提案し,未知の勾配に基づく,生成モデルに基づく,物理的対向攻撃を検出することができる対向検出器を訓練する。
- 参考スコア(独自算出の注目度): 28.637963515748456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a defense strategy against adversarial attacks, adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data. Although previous detection methods achieve high performance in detecting gradient-based adversarial attacks, new attacks based on generative models with imbalanced and anisotropic noise patterns evade detection. Even worse, existing techniques either necessitate access to attack data before deploying a defense or incur a significant time cost for inference, rendering them impractical for defending against newly emerging attacks that are unseen by defenders. In this paper, we explore the proximity relationship between adversarial noise distributions and demonstrate the existence of an open covering for them. By learning to distinguish this open covering from the distribution of natural data, we can develop a detector with strong generalization capabilities against all types of adversarial attacks. Based on this insight, we heuristically propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks, while remaining agnostic to any specific models. Comprehensive experiments conducted on multiple general and facial datasets, with a wide spectrum of attacks, validate the strong generalization of our method.
- Abstract(参考訳): 敵対的攻撃に対する防御戦略として、敵対的検出は、自然・敵対的データ間の分布の相違とノイズパターンに基づいて、データフローから敵対的データを識別・フィルタリングすることを目的としている。
従来の検出手法は勾配に基づく対向攻撃の検出では高い性能を示すが,不均衡および異方性雑音パターンを回避した生成モデルに基づく新たな攻撃は回避される。
さらに悪いことに、既存のテクニックは、防衛を展開する前に攻撃データへのアクセスを必要とするか、推論にかなりの時間的コストを要し、防御者が目にしない新たな攻撃を防御するためには実用的ではない。
本稿では, 対向雑音分布間の近接関係について検討し, 開放被覆の存在を実証する。
このオープンカバーと自然データの分布を区別することで、あらゆる種類の敵攻撃に対して強力な一般化能力を持つ検出器を開発することができる。
この知見に基づいて,ノイズ分布の摂動,スパースマスク生成,擬似逆数データ生成を含む摂動フォージェリを提案し,特定のモデルに依存せず,未知の勾配ベース,生成モデルベース,物理的逆数攻撃を検出可能な逆数検出器を訓練する。
複数の汎用的および顔的データセットに対して行われた総合的な実験は、幅広い攻撃範囲で、我々の手法の強力な一般化を検証した。
関連論文リスト
- BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
フェデレーテッド・ラーニングは、その分散した性質のため、毒殺の被害を受けやすい。
本稿では,この問題を解決するために,分布認識型異常検出機構であるBoBaを提案する。
論文 参考訳(メタデータ) (2024-07-12T19:38:42Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Detecting Adversarial Faces Using Only Real Face Self-Perturbations [36.26178169550577]
アドリアックは、入力サンプルに特定のノイズを加えることで、ターゲットシステムの機能を妨害することを目的としている。
既存の防御技術は、特定の対向顔(adv-faces)の検出において高い精度を達成する
全く異なるノイズパターンを持つ新しい攻撃方法、特にGANベースの攻撃は、それらを回避し、より高い攻撃成功率に達する。
論文 参考訳(メタデータ) (2023-04-22T09:55:48Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
アドリアックは、入力サンプルに小さな、知覚不能な摂動を挿入し、ディープラーニングモデルの出力に大きな、望ましくない変化を引き起こす。
本研究は, 対人攻撃に最も影響を受けやすいサンプルを同定することを目的とした, サンプル攻撃可能性の概念を紹介する。
本研究では,未知のターゲットモデルに対する未知のデータセットにおいて,逆攻撃可能で頑健なサンプルを識別するディープラーニングベースの検出器を提案する。
論文 参考訳(メタデータ) (2023-01-30T13:58:14Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
敵の防御は、通常、敵の音を除去したり、敵の頑強な目標モデルを訓練するために、敵の例を活用することに焦点を当てる。
逆データと自然データの関係は、逆データからクリーンデータを推測し、最終的な正しい予測を得るのに役立ちます。
本研究では, ラベル空間の遷移関係を学習するために, 逆方向の雑音をモデル化し, 逆方向の精度を向上させることを目的とした。
論文 参考訳(メタデータ) (2021-09-21T01:13:26Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。