Deep Multi-Manifold Transformation Based Multivariate Time Series Fault Detection
- URL: http://arxiv.org/abs/2405.16258v2
- Date: Sun, 29 Jun 2025 14:17:13 GMT
- Title: Deep Multi-Manifold Transformation Based Multivariate Time Series Fault Detection
- Authors: Hong Liu, Xiuxiu Qiu, Yiming Shi, Miao Xu, Zelin Zang, Zhen Lei,
- Abstract summary: We propose a new method that combines a neighborhood-driven data augmentation strategy with a multi-manifold representation learning framework.<n>Our method achieves superior performance in terms of both accuracy and robustness, showing strong potential for generalization and real-world deployment.
- Score: 22.005142941322912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised fault detection in multivariate time series plays a vital role in ensuring the stable operation of complex systems. Traditional methods often assume that normal data follow a single Gaussian distribution and identify anomalies as deviations from this distribution. {\color{black} However, this simplified assumption fails to capture the diversity and structural complexity of real-world time series, which can lead to misjudgments and reduced detection performance in practical applications. To address this issue, we propose a new method that combines a neighborhood-driven data augmentation strategy with a multi-manifold representation learning framework.} By incorporating information from local neighborhoods, the augmentation module can simulate contextual variations of normal data, enhancing the model's adaptability to distributional changes. In addition, we design a structure-aware feature learning approach that encourages natural clustering of similar patterns in the feature space while maintaining sufficient distinction between different operational states. Extensive experiments on several public benchmark datasets demonstrate that our method achieves superior performance in terms of both accuracy and robustness, showing strong potential for generalization and real-world deployment.
Related papers
- DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection [12.658792855097198]
Time series anomaly holds notable importance for risk identification and fault detection across diverse application domains.
Unsupervised learning methods have become popular because they have no requirement for labels.
We propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD)
arXiv Detail & Related papers (2025-04-19T06:35:06Z) - Bridging Distribution Gaps in Time Series Foundation Model Pretraining with Prototype-Guided Normalization [29.082583523943157]
We propose a domain-aware adaptive normalization strategy within the Transformer architecture.<n>We replace the traditional LayerNorm with a prototype-guided dynamic normalization mechanism (ProtoNorm)<n>Our method significantly outperforms conventional pretraining techniques across both classification and forecasting tasks.
arXiv Detail & Related papers (2025-04-15T06:23:00Z) - On the Regularization of Learnable Embeddings for Time Series Forecasting [18.069747511100132]
We investigate methods to regularize the learning of local learnable embeddings for time series processing.<n>We show that methods attempting to prevent the co-adaptation of local and global parameters by means of embeddings perturbation are particularly effective in this context.
arXiv Detail & Related papers (2024-10-18T17:30:20Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB)<n>OB is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications.<n>OB is model-agnostic, making it applicable to a wide range of machine learning models and tasks.
arXiv Detail & Related papers (2024-03-26T16:40:08Z) - Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling [14.170879566023098]
We introduce a learnable decomposition strategy to capture dynamic trend information more reasonably.
We also propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously.
arXiv Detail & Related papers (2024-02-20T03:45:59Z) - Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning [80.44084021062105]
We propose a novel latent partial causal model for multimodal data, featuring two latent coupled variables, connected by an undirected edge, to represent the transfer of knowledge across modalities.<n>Under specific statistical assumptions, we establish an identifiability result, demonstrating that representations learned by multimodal contrastive learning correspond to the latent coupled variables up to a trivial transformation.<n>Experiments on a pre-trained CLIP model embodies disentangled representations, enabling few-shot learning and improving domain generalization across diverse real-world datasets.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Probabilistic Learning of Multivariate Time Series with Temporal Irregularity [21.361823581838355]
Real-world time series often suffer from temporal irregularities, including nonuniform intervals and misaligned variables.<n>We propose an end-to-end framework that models temporal irregularities while capturing the joint distribution of variables at arbitrary continuous-time points.
arXiv Detail & Related papers (2023-06-15T14:08:48Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems.
We propose a novel scoring network with a score-guided regularization to learn and enlarge the anomaly score disparities between normal and abnormal data.
We next propose a score-guided autoencoder (SG-AE), incorporating the scoring network into an autoencoder framework for anomaly detection.
arXiv Detail & Related papers (2021-09-10T06:14:53Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.