論文の概要: MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
- arxiv url: http://arxiv.org/abs/2405.16265v1
- Date: Sat, 25 May 2024 15:07:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 22:17:06.186097
- Title: MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
- Title(参考訳): MindStar: 推論時間における事前学習LDMにおける数学推論の強化
- Authors: Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Boxing Chen,
- Abstract要約: MindStarは純粋に推論に基づく探索手法であり、推論タスクを探索問題として扱う。
GSM8KとMATHの両方のデータセット上でM*フレームワークを評価する。
以上の結果から,M*はオープンソースモデルの推論能力を大幅に向上させることが示された。
- 参考スコア(独自算出の注目度): 19.76034177986023
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method called MindStar (M*), which treats reasoning tasks as search problems. This method utilizes a step-wise reasoning approach to navigate the tree space. To enhance search efficiency, we propose two tree-search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
- Abstract(参考訳): 大きな言語モデル(LLM)は様々なタスクで顕著なパフォーマンスを達成するが、数学的な疑問に答えるなど複雑な推論タスクに苦しむことが多い。
この問題に対処する最近の取り組みは、主に教師付き微調整技術や自己改善技術による数学的データセットの活用に焦点を当てている。
しかし、これらの手法は、しばしば準備が難しい高品質なデータセットに依存するか、あるいは微調整のためにかなりの計算資源を必要とする。
LLMは正しい解答の仕方を知っているが、正しい推論経路を選択するのに苦労しているという知見に触発されて、純粋に推論に基づく探索手法であるMindStar(M*)を提案し、推論タスクを探索問題として扱う。
この方法は、ステップワイズ推論アプローチを用いてツリー空間をナビゲートする。
探索効率を向上させるために,最適な推論経路を特定するための2つの木探索手法を提案する。
GSM8KとMATHの両方のデータセット上でM*フレームワークを評価し,その性能を既存のオープンソースLLMと比較した。
その結果,M* は Llama-2-13B や Mistral-7B などのオープンソースモデルの推論能力を大幅に向上し,GPT-3.5 や Grok-1 に匹敵する性能が得られたが,モデルサイズや計算コストは大幅に削減された。
関連論文リスト
- Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
大規模な言語モデルによる数学的推論への既存のアプローチは、一般化可能性(英語版)にはChain-of-Thought(英語版)(CoT)、正確な計算にはTool-Integrated Reasoning(英語版)(TIR)に依存している。
本稿では, LLM が自然に推論戦略をパーソナライズできる適応型フレームワークである TATA (Teaching LLMs according their Aptitude) を提案する。
論文 参考訳(メタデータ) (2025-02-17T16:56:23Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - System-2 Mathematical Reasoning via Enriched Instruction Tuning [13.672967091915181]
Enriched Instruction Tuning (EIT) は、人間とAIのフィードバックを相乗化することによって、既存の人間の注釈付き数学的データセットを充実させる手法である。
EITはGSM8Kで84.1%、MATHで32.5%の精度を達成し、最先端の微調整およびプロンプト法を超越している。
論文 参考訳(メタデータ) (2024-12-22T10:49:27Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
我々は、4つの強力な基礎モデル上の5つの広く使われている数学的データセットの数学的問題解決のための、最先端の文脈内学習アルゴリズムを7つ比較した。
以上の結果から, GPT-4o や LLaMA 3-70B のような大規模基盤モデルでは, 具体的なプロンプト戦略とは独立に数学的推論を解くことが可能であることが示唆された。
将来の研究で追加モデルの統合をサポートするために、ベンチマークコードをオープンソースにしています。
論文 参考訳(メタデータ) (2024-08-20T13:34:17Z) - AlphaMath Almost Zero: Process Supervision without Process [6.318873143509028]
我々はモンテカルロ木探索(MCTS)を活用することによってプロセスアノテーションの必要性を回避できる革新的なフレームワークAlphaMathを提案する。
このフレームワークは、その数学的推論を自律的に強化する、よく訓練されたLLMの可能性を解き放つことに焦点を当てている。
ドメイン内データセットとドメイン外データセットの両方の実験結果から,GPT-4や人手によるプロセス監視がなくても,AlphaMathフレームワークは従来の最先端手法と同等あるいは優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-06T15:20:30Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
算術的推論とコード生成という,2つの一般的な推論タスクに注目します。
i) 数学やコーディング問題に対する摂動の一般的なオントロジー, (ii) 摂動を応用するための半自動手法, (iii) 2つのデータセットを紹介する。
混乱した質問に対して、すべてのモデルで大幅なパフォーマンス低下を示します。
論文 参考訳(メタデータ) (2024-01-17T18:13:07Z) - Improving Large Language Model Fine-tuning for Solving Math Problems [20.417053742869403]
大きな言語モデルのパス・アット・ワン(pass-at-one)とパス・アット・N(pass-at-N)のパフォーマンスの間には大きなギャップがある。
挑戦的なMATHデータセットを用いて3つの微調整戦略を検討する。
我々は、微調整されたPaLM 2-Lモデルを用いて、MATHデータセット上で約58.8%の精度が得られる微調整レシピを設計する。
論文 参考訳(メタデータ) (2023-10-16T04:11:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。