論文の概要: Synthesis by Design: Controlled Data Generation via Structural Guidance
- arxiv url: http://arxiv.org/abs/2506.07664v2
- Date: Tue, 10 Jun 2025 21:19:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-12 23:41:16.728236
- Title: Synthesis by Design: Controlled Data Generation via Structural Guidance
- Title(参考訳): 設計による合成:構造誘導による制御データ生成
- Authors: Lei Xu, Sirui Chen, Yuxuan Huang, Chaochao Lu,
- Abstract要約: 数学的推論から生成した問題解決コードを用いて構造情報を抽出する。
提案手法は,ラベル付き中間ステップと6.1K-problemベンチマークで39Kの問題を発生させる。
ベンチマークの結果,推論長の増加に伴いモデル性能が低下することが示された。
- 参考スコア(独自算出の注目度): 7.938713951512933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities. Our code and data are available at https://github.com/OpenCausaLab/StructuralGeneration.
- Abstract(参考訳): 複雑な論理と正確な計算の必要性から、LLMの数学的推論は依然として困難である。
既存の手法は、問題表現を通じてデータセットを合成することでLCM推論を強化するが、生成品質と問題複雑性の問題に直面する。
そこで本研究では, 数学的推論から生成した問題解決コードを用いて構造情報を抽出し, 構造化解を用いたガイドデータ生成を提案する。
提案手法はMATHおよびGSM8Kに適用され,ラベル付き中間ステップと6.1K-problemベンチマークを用いて39K問題を生成する。
ベンチマークの結果,推論長の増加に伴いモデル性能が低下することが示された。
さらに,LLMにおけるトレーニングデータを用いた微調整実験を行い,本データセットの有効性を検証した。
提案手法とデータセットが今後のLSM推論能力の向上に寄与することを期待している。
私たちのコードとデータはhttps://github.com/OpenCausaLab/StructuralGeneration.comで公開されています。
関連論文リスト
- RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library [58.404895570822184]
RV-Synは、新しい数学的合成手法である。
このライブラリからPython形式の関数を組み合わせることで、グラフをソリューションとして生成する。
構築したグラフに基づいて,解誘導論理認識問題生成を実現する。
論文 参考訳(メタデータ) (2025-04-29T04:42:02Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
本稿では,新しい,スケーラブルで費用対効果の高いデータ合成手法であるScaleQuestを提案する。
スクラッチから多様な質問を生成することで、100万の問題解決ペアのデータセットを生成します。
私たちの実験では、データに基づいてトレーニングされたモデルが、既存のオープンソースデータセットより優れています。
論文 参考訳(メタデータ) (2024-10-24T12:42:04Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Reliable Reasoning Beyond Natural Language [0.047888359248129786]
大きな言語モデル(LLM)は、しばしば、確実に柔軟に推論する能力の限界を示す。
本稿では,問題文から全ての関連情報を論理コード文として抽出し,エンコードする手法を提案する。
次に、論理型プログラミング言語(Prolog)を用いて、明示的な推論の反復的な計算を行う。
論文 参考訳(メタデータ) (2024-07-16T04:34:18Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
算術的推論とコード生成という,2つの一般的な推論タスクに注目します。
i) 数学やコーディング問題に対する摂動の一般的なオントロジー, (ii) 摂動を応用するための半自動手法, (iii) 2つのデータセットを紹介する。
混乱した質問に対して、すべてのモデルで大幅なパフォーマンス低下を示します。
論文 参考訳(メタデータ) (2024-01-17T18:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。