論文の概要: Generating clickbait spoilers with an ensemble of large language models
- arxiv url: http://arxiv.org/abs/2405.16284v1
- Date: Sat, 25 May 2024 15:49:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 22:07:19.355896
- Title: Generating clickbait spoilers with an ensemble of large language models
- Title(参考訳): 大規模言語モデルを用いたクリックベイトスポイラーの生成
- Authors: Mateusz Woźny, Mateusz Lango,
- Abstract要約: クリックベイトスポイラー生成のための微調整された大言語モデルのアンサンブルを提案する。
提案手法はフレーズスポイラーや文節スポイラーに限らず, テキストの非連続部分を参照するマルチパートスポイラーを生成することができる。
実験により,提案したアンサンブルモデルがBLEU, METEOR, BERTScoreの基準値よりも高い性能を示した。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clickbait posts are a widespread problem in the webspace. The generation of spoilers, i.e. short texts that neutralize clickbait by providing information that satisfies the curiosity induced by it, is one of the proposed solutions to the problem. Current state-of-the-art methods are based on passage retrieval or question answering approaches and are limited to generating spoilers only in the form of a phrase or a passage. In this work, we propose an ensemble of fine-tuned large language models for clickbait spoiler generation. Our approach is not limited to phrase or passage spoilers, but is also able to generate multipart spoilers that refer to several non-consecutive parts of text. Experimental evaluation demonstrates that the proposed ensemble model outperforms the baselines in terms of BLEU, METEOR and BERTScore metrics.
- Abstract(参考訳): Clickbaitの投稿は、Web空間で広く使われている問題だ。
スポイラーの生成、すなわちクリックベイトを中和する短いテキストは、それによって引き起こされる好奇心を満たす情報を提供し、この問題に対する提案された解決策の1つである。
現在の最先端の手法は、文節検索や質問応答アプローチに基づいており、句や文節の形でのみスポイラーを生成することに制限されている。
本研究では,クリックベイトスポイラー生成のための細調整された大規模言語モデルのアンサンブルを提案する。
提案手法はフレーズスポイラーや文節スポイラーに限らず, テキストの非連続部分を参照するマルチパートスポイラーを生成することができる。
実験により,提案したアンサンブルモデルがBLEU, METEOR, BERTScoreの基準値よりも高い性能を示した。
関連論文リスト
- Mitigating Clickbait: An Approach to Spoiler Generation Using Multitask Learning [6.404122934568859]
本研究では,スポイラーを簡潔なテキスト応答として検出・分類・生成する新技術である「クリックベイトスポイリング」を紹介する。
マルチタスク学習フレームワークを活用することで,モデルの一般化能力は大幅に向上する。
本研究は,クリックベイト問題に対処するための高度なテキスト処理技術の可能性を強調した。
論文 参考訳(メタデータ) (2024-05-07T13:09:25Z) - Prompt-tuning for Clickbait Detection via Text Summarization [18.027598728494485]
クリックベイト(Clickbaits)は、ソーシャルな投稿や、クリック数を増やすためにユーザーを誘惑する偽ニュースの見出しだ。
既存のほとんどの手法は、クリックベイトを検出するために見出しと内容のセマンティックな類似性を計算する。
テキスト要約によるクリックベイト検出のプロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:02Z) - Low-Resource Clickbait Spoiling for Indonesian via Question Answering [14.670767459273307]
クリックベイト腐敗は、クリックベイト投稿によって引き起こされる好奇心を満たすための短いテキストを生成することを目的としている。
新しく導入されたタスクなので、データセットは今のところ英語でしか利用できない。
私たちのコントリビューションには、インドネシアにおける手作業によるクリックベイト腐敗コーパスの構築が含まれています。
論文 参考訳(メタデータ) (2023-10-12T07:17:17Z) - Clickbait Classification and Spoiling Using Natural Language Processing [2.66512000865131]
クリックベイトを3つのタイプのうちの1つ(タスク1)に分類し、クリックベイトを台無しにする(タスク2)という2つのタスクに取り組む。
タスク1では、最終スポイラー型を決定するために2つのバイナリ分類器を提案する。
タスク2では,質問応答モデルを用いてスポイラーのテキストのスパンを識別し,大言語モデル(LLM)を用いてスポイラーを生成する。
論文 参考訳(メタデータ) (2023-06-16T01:45:57Z) - Click: Controllable Text Generation with Sequence Likelihood Contrastive
Learning [69.35360098882606]
制御可能なテキスト生成のためのClickを導入し、モデルアーキテクチャを変更する必要はない。
シークエンス確率は対照的な損失を伴い、負のサンプルの生成確率を根本的に低下させる。
また、モデル世代から対照的なサンプルを構築するための、新しいランキングベースの戦略も採用している。
論文 参考訳(メタデータ) (2023-06-06T01:56:44Z) - Detecting Spoilers in Movie Reviews with External Movie Knowledge and
User Networks [49.34060089217864]
オンライン映画レビュープラットフォームは、映画産業と一般大衆にクラウドソースによるフィードバックを提供している。
自動でスポイラーを識別するための予備的な研究が実施されたが、それらは単にレビューの内容そのものに焦点を当てているだけであった。
本稿では,映画レビュープラットフォーム上での映画やユーザ活動の外部知識を考慮した,新しい多視点スポイラー検出フレームワークであるMVSDを提案する。
論文 参考訳(メタデータ) (2023-04-22T13:54:31Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Clickbait Spoiling via Question Answering and Passage Retrieval [25.257288432595477]
我々はクリックベイト腐敗の課題を紹介し,研究する。
クリックベイトはウェブページへのリンクを投稿し、好奇心を喚起してそのコンテンツを宣伝する。
我々の貢献は、必要なスポイラーの種類を分類し、適切なスポイラーを生成するアプローチである。
論文 参考訳(メタデータ) (2022-03-19T09:40:33Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
対話型フィクション(IF)ゲームと実際の自然言語テキストは、言語理解技術に対する新たな自然な評価を提供する。
IFゲーム解決の新たな視点を捉え,MPRC(Multi-Passage Reading)タスクとして再フォーマットする。
論文 参考訳(メタデータ) (2020-10-05T23:09:20Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。