論文の概要: LDPKiT: Recovering Utility in LDP Schemes by Training with Noise^2
- arxiv url: http://arxiv.org/abs/2405.16361v1
- Date: Sat, 25 May 2024 21:53:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:47:39.499835
- Title: LDPKiT: Recovering Utility in LDP Schemes by Training with Noise^2
- Title(参考訳): LDPKiT:騒音による学習によるLDPスキームの実用性回復(第2報)
- Authors: Kexin Li, Yang Xi, Aastha Mehta, David Lie,
- Abstract要約: LDPKiTは,知識伝達による地域差分とユーティリティ保存推論の略である。
CIFAR-10, Fashion-MNIST, SVHN, CARER NLPデータセットを用いた実験により, LDPKiTはプライバシーを損なうことなく実用性を向上させることができることを示した。
- 参考スコア(独自算出の注目度): 7.879470113673807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adoption of large cloud-based models for inference has been hampered by concerns about the privacy leakage of end-user data. One method to mitigate this leakage is to add local differentially private noise to queries before sending them to the cloud, but this degrades utility as a side effect. Our key insight is that knowledge available in the noisy labels returned from performing inference on noisy inputs can be aggregated and used to recover the correct labels. We implement this insight in LDPKiT, which stands for Local Differentially-Private and Utility-Preserving Inference via Knowledge Transfer. LDPKiT uses the noisy labels returned from querying a set of noised inputs to train a local model (noise^2), which is then used to perform inference on the original set of inputs. Our experiments on CIFAR-10, Fashion-MNIST, SVHN, and CARER NLP datasets demonstrate that LDPKiT can improve utility without compromising privacy. For instance, on CIFAR-10, compared to a standard $\epsilon$-LDP scheme with $\epsilon=15$, which provides a weak privacy guarantee, LDPKiT can achieve nearly the same accuracy (within 1% drop) with $\epsilon=7$, offering an enhanced privacy guarantee. Moreover, the benefits of using LDPKiT increase at higher, more privacy-protective noise levels. For Fashion-MNIST and CARER, LDPKiT's accuracy on the sensitive dataset with $\epsilon=7$ not only exceeds the average accuracy of the standard $\epsilon$-LDP scheme with $\epsilon=7$ by roughly 20% and 9% but also outperforms the standard $\epsilon$-LDP scheme with $\epsilon=15$, a scenario with less noise and minimal privacy protection. We also perform Zest distance measurements to demonstrate that the type of distillation performed by LDPKiT is different from a model extraction attack.
- Abstract(参考訳): 大規模クラウドベースの推論モデルの採用は、エンドユーザデータのプライバシー漏洩に関する懸念から妨げられている。
このリークを緩和する1つの方法は、クラウドに送信する前にクエリに局所的に微分プライベートノイズを追加することだが、副作用として実用性は低下する。
我々の重要な洞察は、ノイズの入力に対する推論から返されるノイズのラベルから得られる知識を集約し、正しいラベルを復元できるということである。
この知見は,LDPKiTにおいて実装されている。
LDPKiTは、ノイズ入力の集合をクエリして返されるノイズラベルを使用して、ローカルモデル(ノイズ^2)をトレーニングし、元の入力セットの推論に使用される。
CIFAR-10, Fashion-MNIST, SVHN, CARER NLPデータセットを用いた実験により, LDPKiTはプライバシーを損なうことなく実用性を向上させることができることを示した。
例えば、CIFAR-10では、標準の$\epsilon$-LDPスキームが$\epsilon=15$で、プライバシー保証が弱いのに対して、LDPKiTは$\epsilon=7$でほぼ同じ精度(1%の低下で)を達成でき、プライバシー保証が強化されている。
さらに、LDPKiTを使用することの利点は、より高いプライバシー保護ノイズレベルにおいて増加する。
Fashion-MNISTとCARERにとって、LDPKiTの精度は、$\epsilon=7$が標準の$\epsilon$-LDPスキームの平均精度を超えるだけでなく、$\epsilon=7$が約20%、9%、標準の$\epsilon$-LDPスキームが$\epsilon=15$を上回る。
また, LDPKiTによる蒸留の種類がモデル抽出攻撃と異なることを示すため, Zest 距離測定を行った。
関連論文リスト
- $(ε, δ)$-Differentially Private Partial Least Squares Regression [1.8666451604540077]
我々は,モデルに基づくデータのプライバシーを確保するために,$(epsilon, delta)$-differentially private PLS (edPLS)アルゴリズムを提案する。
実験により、EDPLSはトレーニングデータに固有の変動源を回復することを目的とした、効果的なプライバシー攻撃を施すことが示されている。
論文 参考訳(メタデータ) (2024-12-12T10:49:55Z) - Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Privacy Constrained Fairness Estimation for Decision Trees [2.9906966931843093]
任意のAIモデルの公平さを測定するには、データセット内の個人の敏感な属性が必要である。
プライバシ・アウェア・フェアネス・オブ・ルール(PAFER)と呼ばれる新しい手法を提案する。
提案手法は,ラプラシアン機構を用いて,データセット内の個人のプライバシーを高い確度で保証しつつ,低い誤差でSPを推定できることを示す。
論文 参考訳(メタデータ) (2023-12-13T14:54:48Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - On the Inherent Privacy Properties of Discrete Denoising Diffusion Models [17.773335593043004]
本稿では、離散拡散モデルに固有のプライバシー保護の先駆的な理論的探索について述べる。
我々のフレームワークは、トレーニングデータセット内の各データポイントの潜在的なプライバシー漏洩を解明する。
当社のバウンダリは、$$$サイズのデータポイントによるトレーニングが、プライバシー漏洩の急増につながっていることも示しています。
論文 参考訳(メタデータ) (2023-10-24T05:07:31Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
差別化プライバシは、プライバシとユーティリティのトレードオフの定量化を可能にする正式な定義である。
ローカルDP(LDP)モデルでは、ユーザはデータをサーバに送信する前に、ローカルにデータをサニタイズすることができる。
いずれの場合も、微分プライベートなMLモデルは、非プライベートなモデルとほぼ同じユーティリティメトリクスを達成できると結論付けました。
論文 参考訳(メタデータ) (2022-04-02T12:50:14Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。