論文の概要: Network Interdiction Goes Neural
- arxiv url: http://arxiv.org/abs/2405.16409v1
- Date: Sun, 26 May 2024 02:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:28:05.095920
- Title: Network Interdiction Goes Neural
- Title(参考訳): Network Interdictionがニューラルに
- Authors: Lei Zhang, Zhiqian Chen, Chang-Tien Lu, Liang Zhao,
- Abstract要約: ネットワーク断面積問題は、2人のプレイヤーが関与する最適化問題である。
1つは、ネットワーク上の最適化問題を解決することを目的としており、もう1つは、最初のプレイヤーの目的を阻止するためにネットワークを変更することを目的としている。
- 参考スコア(独自算出の注目度): 26.308933674471895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network interdiction problems are combinatorial optimization problems involving two players: one aims to solve an optimization problem on a network, while the other seeks to modify the network to thwart the first player's objectives. Such problems typically emerge in an attacker-defender context, encompassing areas such as military operations, disease spread analysis, and communication network management. The primary bottleneck in network interdiction arises from the high time complexity of using conventional exact solvers and the challenges associated with devising efficient heuristic solvers. GNNs, recognized as a cutting-edge methodology, have shown significant effectiveness in addressing single-level CO problems on graphs, such as the traveling salesman problem, graph matching, and graph edit distance. Nevertheless, network interdiction presents a bi-level optimization challenge, which current GNNs find difficult to manage. To address this gap, we represent network interdiction problems as Mixed-Integer Linear Programming (MILP) instances, then apply a multipartite GNN with sufficient representational capacity to learn these formulations. This approach ensures that our neural network is more compatible with the mathematical algorithms designed to solve network interdiction problems, resulting in improved generalization. Through two distinct tasks, we demonstrate that our proposed method outperforms theoretical baseline models and provides advantages over traditional exact solvers.
- Abstract(参考訳): 1つはネットワーク上の最適化問題を解くことを目的としており、もう1つはネットワークを変更して最初のプレイヤーの目的を妨げようとしている。
このような問題は、通常、軍事作戦、病気の拡散分析、通信ネットワーク管理といった分野を含む攻撃的・防御的文脈で発生する。
ネットワーク干渉の主なボトルネックは、従来の正確な解法を用いる場合の時間的複雑さと、効率的なヒューリスティック解法を考案する際の課題から生じる。
最先端の手法として認識されているGNNは、旅行セールスマン問題、グラフマッチング、グラフ編集距離など、グラフ上の単一レベルのCO問題に対処する上で大きな効果を示している。
それでも、ネットワークインターディクションは、現在のGNNの管理が困難である、双方向最適化の課題を提示している。
このギャップに対処するために、ネットワークの断面積問題をMILP(Mixed-Integer Linear Programming)インスタンスとして表現し、これらの定式化を学ぶのに十分な表現能力を持つ多部GNNを適用する。
このアプローチにより、ニューラルネットワークは、ネットワーク交叉問題の解法として設計された数学的アルゴリズムとの互換性が向上し、一般化が向上する。
2つの異なるタスクを通して,提案手法が理論ベースラインモデルより優れ,従来の正確な解法よりも優れていることを示す。
関連論文リスト
- Learning to Solve Combinatorial Optimization under Positive Linear Constraints via Non-Autoregressive Neural Networks [103.78912399195005]
組合せ最適化(英: Combinatorial Optimization、CO)は、計算機科学、応用数学などにおける基本的な問題である。
本稿では, 正線形制約下でのCO問題の解法として, 非自己回帰ニューラルネットワーク群を設計する。
本研究では,施設位置,最大被覆率,旅行セールスマン問題を含む代表的CO問題の解決において,この枠組みの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-06T14:58:31Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - WeaveNet for Approximating Two-sided Matching Problems [16.014942651874815]
本稿では,二部グラフ用に設計された新しいグラフニューラルネットワーク(GNN, textitWeaveNet)を提案する。
我々のモデルは,少数のエージェントに対する安定マッチングのために特別に設計された最先端のアルゴリズムとの比較性能に到達した。
論文 参考訳(メタデータ) (2023-10-19T06:32:12Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
本稿では,強力で堅牢なノード埋め込みを抽出するグラフオートエンコーダアーキテクチャを提案する。
生成した埋め込みがグラフの固有値と固有ベクトルと結びついていることを証明する。
提案フレームワークは転送学習とデータ拡張を利用して,大規模なネットワークアライメントを実現する。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Graph Reinforcement Learning for Network Control via Bi-Level
Optimization [37.00510744883984]
我々は、データ駆動戦略がこのプロセスを自動化し、最適性を損なうことなく効率的なアルゴリズムを学習できると主張している。
我々は、強化学習のレンズを通してネットワーク制御の問題を提示し、幅広い問題に対処するグラフネットワークベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T03:20:22Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
時間に依存しない問題は、正確な予測を得るために、計算領域全体にわたる情報の長距離交換を必要とするという課題を生じさせる。
この課題を克服するために、Edge Augmented GNNとMulti-GNNの2つのグラフニューラルネットワーク(GNN)を提案する。
両ネットワークは,時間非依存の固体力学問題に適用した場合,ベースライン法よりも(1.5~2の係数で)有意に優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-03-28T02:04:43Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
グラフエッジ上での協調ビームフォーミングを学習するためのエッジグラフニューラルネットワーク(Edge-GNN)を提案する。
提案したEdge-GNNは、最先端の手法よりも計算時間をはるかに短くして、より高い和率を達成する。
論文 参考訳(メタデータ) (2022-11-23T02:05:06Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
本稿では,大規模無線資源管理問題にグラフニューラルネットワーク(GNN)を適用することを提案する。
提案手法はスケーラビリティが高く,1つのGPU上で1,000ドルのトランシーバペアを6ミリ秒以内で行う干渉チャネルにおけるビームフォーミング問題を解くことができる。
論文 参考訳(メタデータ) (2020-07-15T11:43:32Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。