論文の概要: Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models
- arxiv url: http://arxiv.org/abs/2405.16413v1
- Date: Sun, 26 May 2024 03:05:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:28:05.087523
- Title: Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models
- Title(参考訳): 大規模言語モデルによるアルツハイマー病発症リスク予測
- Authors: Jiankun Wang, Sumyeong Ahn, Taykhoom Dalal, Xiaodan Zhang, Weishen Pan, Qiannan Zhang, Bin Chen, Hiroko H. Dodge, Fei Wang, Jiayu Zhou,
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、65歳以上のアメリカ人で5番目に多い死因である。
大規模言語モデル(LLM)の最近の進歩は、リスク予測の強化に強い可能性を秘めている。
本稿では,LSMの少数ショット推論能力を活用することでリスク予測を向上する新しいパイプラインを提案する。
- 参考スコア(独自算出の注目度): 42.676566166835585
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Alzheimer's disease (AD) is the fifth-leading cause of death among Americans aged 65 and older. Screening and early detection of AD and related dementias (ADRD) are critical for timely intervention and for identifying clinical trial participants. The widespread adoption of electronic health records (EHRs) offers an important resource for developing ADRD screening tools such as machine learning based predictive models. Recent advancements in large language models (LLMs) demonstrate their unprecedented capability of encoding knowledge and performing reasoning, which offers them strong potential for enhancing risk prediction. This paper proposes a novel pipeline that augments risk prediction by leveraging the few-shot inference power of LLMs to make predictions on cases where traditional supervised learning methods (SLs) may not excel. Specifically, we develop a collaborative pipeline that combines SLs and LLMs via a confidence-driven decision-making mechanism, leveraging the strengths of SLs in clear-cut cases and LLMs in more complex scenarios. We evaluate this pipeline using a real-world EHR data warehouse from Oregon Health \& Science University (OHSU) Hospital, encompassing EHRs from over 2.5 million patients and more than 20 million patient encounters. Our results show that our proposed approach effectively combines the power of SLs and LLMs, offering significant improvements in predictive performance. This advancement holds promise for revolutionizing ADRD screening and early detection practices, with potential implications for better strategies of patient management and thus improving healthcare.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's disease、AD)は、65歳以上のアメリカ人で5番目に多い死因である。
ADおよび関連認知症(ADRD)のスクリーニングと早期発見は、タイムリーな介入と臨床試験参加者の特定に重要である。
電子健康記録(EHR)の普及は、機械学習ベースの予測モデルのようなADRDスクリーニングツールを開発する上で重要なリソースを提供する。
大規模言語モデル(LLM)の最近の進歩は、知識を符号化し、推論を行うという前例のない能力を示している。
本稿では,従来の教師付き学習手法(SL)が優れている場合の予測を行うため,LSMの数発の推論能力を活用し,リスク予測を向上するパイプラインを提案する。
具体的には、より複雑なシナリオにおけるSLとLLMの強みを活かし、信頼性駆動型意思決定機構を用いて、SLとLLMを組み合わせるコラボレーティブパイプラインを開発する。
このパイプラインは、オレゴン健康科学大学(OHSU)病院の実際のEHRデータウェアハウスを用いて評価し、250万人以上の患者と2000万人以上の患者からのEHRを包含する。
提案手法は,SLとLLMのパワーを効果的に組み合わせることで,予測性能を大幅に向上することを示す。
この進歩はADRDスクリーニングと早期発見の実践に革命をもたらす可能性を秘めており、患者管理のより良い戦略や医療改善の可能性を秘めている。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
LLM(Large Language Models)からの外部知識の統合は、医療予測を改善するための有望な道を示す。
我々は,LLMを活用して高品質な患者レベルの外部知識を提供する新しいフレームワークであるIntelliCareを提案する。
IntelliCareは患者のコホートを特定し、LCMの理解と生成を促進するためにタスク関連統計情報を利用する。
論文 参考訳(メタデータ) (2024-08-23T13:56:00Z) - LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction [38.11497959553319]
本研究では,構造化患者訪問データを自然言語物語に変換するための大規模言語モデルの適用可能性について検討する。
様々なERH予測指向のプロンプト戦略を用いて,LLMのゼロショット性能と少数ショット性能を評価した。
提案手法を用いることで,従来のERHによる疾患予測の教師付き学習法と比較して,LLMの精度は極めて低いことが示唆された。
論文 参考訳(メタデータ) (2024-03-19T18:10:13Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
大規模言語モデル(LLM)は、伝統的に自然言語処理に向いている。
本研究では, GPT-4 などの LLM の EHR データへの適応性について検討する。
EHRデータの長手性、スパース性、知識を注入した性質に対応するため、本研究は特定の特徴を考慮に入れている。
論文 参考訳(メタデータ) (2024-01-25T20:14:50Z) - Clinical Risk Prediction Using Language Models: Benefits And
Considerations [23.781690889237794]
本研究は,語彙内で構造化された記述を用いて,その情報に基づいて予測を行うことに焦点を当てた。
構造化された EHR を表すために LM を用いると、様々なリスク予測タスクにおいて、改善または少なくとも同等のパフォーマンスが得られます。
論文 参考訳(メタデータ) (2023-11-29T04:32:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。