論文の概要: Partial train and isolate, mitigate backdoor attack
- arxiv url: http://arxiv.org/abs/2405.16488v1
- Date: Sun, 26 May 2024 08:54:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:58:51.626764
- Title: Partial train and isolate, mitigate backdoor attack
- Title(参考訳): 部分列車と孤立・緩和バックドア攻撃
- Authors: Yong Li, Han Gao,
- Abstract要約: 疑わしいサンプルを分離可能なモデルをトレーニングするために,モデルの一部を凍結する新しいモデルトレーニング方法(PT)を提案する。
そして、これに基づいてクリーンモデルが微調整され、バックドア攻撃に抵抗する。
- 参考スコア(独自算出の注目度): 6.583682264938882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are widely known to be vulnerable to backdoor attacks, a method that poisons a portion of the training data to make the target model perform well on normal data sets, while outputting attacker-specified or random categories on the poisoned samples. Backdoor attacks are full of threats. Poisoned samples are becoming more and more similar to corresponding normal samples, and even the human eye cannot easily distinguish them. On the other hand, the accuracy of models carrying backdoors on normal samples is no different from that of clean models.In this article, by observing the characteristics of backdoor attacks, We provide a new model training method (PT) that freezes part of the model to train a model that can isolate suspicious samples. Then, on this basis, a clean model is fine-tuned to resist backdoor attacks.
- Abstract(参考訳): ニューラルネットワークは、バックドア攻撃に弱いことが広く知られている。これは、トレーニングデータの一部に毒を盛り、標的モデルを正常なデータセットで正常に動作させ、攻撃者が特定またはランダムなカテゴリを有毒なサンプルに出力する手法である。
バックドア攻撃は脅威に満ちている。
毒のサンプルは、対応する正常なサンプルとますますよく似ており、人間の目でも容易に区別できない。
一方,通常のサンプルにバックドアを積んだモデルとクリーンモデルとの精度は変わらないが,本論文では,バックドア攻撃の特徴を観察することにより,モデルの一部を凍結して不審なサンプルを識別可能なモデルを訓練する新しいモデルトレーニング法(PT)を提案する。
そして、これに基づいてクリーンモデルが微調整され、バックドア攻撃に抵抗する。
関連論文リスト
- Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
ディープニューラルネットワーク(DNN)は、バックドアと敵の攻撃の両方に対して脆弱であることが知られている。
本稿では,バックドアと敵の攻撃との間には興味深い関係があることを明らかにする。
バックドアと敵の攻撃を同時に防御する新しいプログレッシブ統一防衛アルゴリズムが提案されている。
論文 参考訳(メタデータ) (2024-05-28T07:50:00Z) - The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data [4.9676716806872125]
バックドア攻撃は、ディープニューラルネットワーク(DNN)のトレーニングプロセスに深刻なセキュリティ上の脅威をもたらしている
The Victim and The Beneficiary (V&B) は有毒なモデルを利用して、余分な良性サンプルを使わずにクリーンなモデルを訓練する。
本フレームワークは,良質な試料の性能を維持しつつ,バックドア注入の防止と各種攻撃に対する堅牢化に有効である。
論文 参考訳(メタデータ) (2024-04-17T11:15:58Z) - Backdoor Attack against One-Class Sequential Anomaly Detection Models [10.020488631167204]
そこで我々は,新たなバックドア攻撃戦略を提案することによって,深部連続異常検出モデルを提案する。
攻撃アプローチは2つの主要なステップ、トリガー生成とバックドアインジェクションから構成される。
2つの確立された1クラスの異常検出モデルにバックドアを注入することにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:19:54Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと敵的リスクの関連性を確立することにより、バックドアリスクに対する新たな上限を導出する。
論文 参考訳(メタデータ) (2023-07-20T03:56:04Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
バックドア攻撃とも呼ばれるディープニューラルネットワークに対するトロイの木馬攻撃は、人工知能に対する典型的な脅威である。
FreeEagleは、複雑なバックドア攻撃を効果的に検出できる最初のデータフリーバックドア検出方法である。
論文 参考訳(メタデータ) (2023-02-28T11:31:29Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。