論文の概要: On Sequential Maximum a Posteriori Inference for Continual Learning
- arxiv url: http://arxiv.org/abs/2405.16498v4
- Date: Mon, 10 Mar 2025 09:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:40:15.300205
- Title: On Sequential Maximum a Posteriori Inference for Continual Learning
- Title(参考訳): 連続学習のための後耳推論の逐次最大化について
- Authors: Menghao Waiyan William Zhu, Ercan Engin Kuruoğlu,
- Abstract要約: 損失関数の再帰として逐次最大化を定式化し、損失関数を近似するために連続学習の問題を減らした。
本稿では,2次近似を用いたオートディフ2次積分法と,ニューラルネットワーク近似を用いたニューラルコンソリデーションという2つのコアセットフリー手法を提案する。
ニューラルコンソリデーションは、入力次元が小さい古典的なタスクシーケンスでは良好に機能し、オートディフ二次コンソリデーションは、固定された事前訓練された特徴抽出器を持つイメージタスクシーケンスでは一貫して良好に機能する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We formulate sequential maximum a posteriori inference as a recursion of loss functions and reduce the problem of continual learning to approximating the previous loss function. We then propose two coreset-free methods: autodiff quadratic consolidation, which uses an accurate and full quadratic approximation, and neural consolidation, which uses a neural network approximation. These methods are not scalable with respect to the neural network size, and we study them for classification tasks in combination with a fixed pre-trained feature extractor. We also introduce simple but challenging classical task sequences based on Iris and Wine datasets. We find that neural consolidation performs well in the classical task sequences, where the input dimension is small, while autodiff quadratic consolidation performs consistently well in image task sequences with a fixed pre-trained feature extractor, achieving comparable performance to joint maximum a posteriori training in many cases.
- Abstract(参考訳): 損失関数の再帰として逐次最大化を定式化し、損失関数を近似するために連続学習の問題を減らした。
次に、精度と完全2次近似を用いたオートディフ二次積分法とニューラルネットワーク近似を用いたニューラルコンソリデーションという2つのコアセットフリー手法を提案する。
これらの手法はニューラルネットワークサイズに関して拡張性がなく、固定された事前学習特徴抽出器と組み合わせて分類タスクについて検討する。
また、Iris と Wine のデータセットに基づいた、単純だが挑戦的な古典的なタスクシーケンスも導入する。
ニューラルコンソリデーションは、入力次元が小さい古典的タスクシーケンスでは良好に機能し、オートディフ二次コンソリデーションは、固定された事前訓練された特徴抽出器を用いて、画像タスクシーケンスでは一貫して良好に機能し、多くの場合、関節最大アフタートレーニングに匹敵する性能を達成する。
関連論文リスト
- YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training [9.02251811867533]
YOSO(You-Only-Sample-Once)は、予測精度を維持しながら効率的なトレーニングを実現するアルゴリズムである。
YOSOは、正規直交基底計算のような従来の圧縮センシング(CS)法で高価な計算を避けるだけでなく、高い確率精度の保持も保証している。
論文 参考訳(メタデータ) (2024-11-08T16:47:51Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Learning incomplete factorization preconditioners for GMRES [1.1519724914285523]
行列分解を直接近似するためにグラフニューラルネットワークを訓練する。
グラフニューラルネットワークアーキテクチャを適用することで、出力自体がスパースであることを保証することができます。
GMRESの繰り返し回数を減らし、合成データに対するスペクトル特性を改善する効果を示す。
論文 参考訳(メタデータ) (2024-09-12T17:55:44Z) - Minimizing Chebyshev Prototype Risk Magically Mitigates the Perils of Overfitting [1.6574413179773757]
クラス内特徴相関を低減し,クラス間特徴距離を最大化する多成分損失関数を開発した。
我々は,Chebyshev Prototype Risk (CPR) という用語を明示的なCPR損失関数に限定して実装する。
トレーニングアルゴリズムは、多くの設定において、以前のアプローチの過度な適合を減らし、改善する。
論文 参考訳(メタデータ) (2024-04-10T15:16:04Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
この研究はRandom Linear Projections (RLP)損失を導入し、これはデータ内の幾何学的関係を利用してトレーニング効率を向上させる新しいアプローチである。
ベンチマークデータセットと合成例を用いて実施した経験的評価では、従来の損失関数でトレーニングされたニューラルネットワークは、従来の損失関数でトレーニングされたニューラルネットワークよりも優れていたことが示されている。
論文 参考訳(メタデータ) (2023-11-21T05:22:39Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - RF+clust for Leave-One-Problem-Out Performance Prediction [0.9281671380673306]
本稿では,LOPO(Left-one-problem-out)のパフォーマンス予測について検討する。
我々は、標準ランダムフォレスト(RF)モデル予測が性能値の重み付き平均値で校正することで改善できるかどうかを解析する。
論文 参考訳(メタデータ) (2023-01-23T16:14:59Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。