A Study on Unsupervised Anomaly Detection and Defect Localization using Generative Model in Ultrasonic Non-Destructive Testing
- URL: http://arxiv.org/abs/2405.16580v1
- Date: Sun, 26 May 2024 14:14:35 GMT
- Title: A Study on Unsupervised Anomaly Detection and Defect Localization using Generative Model in Ultrasonic Non-Destructive Testing
- Authors: Yusaku Ando, Miya Nakajima, Takahiro Saitoh, Tsuyoshi Kato,
- Abstract summary: Deterioration of artificial materials used in structures has become a serious social issue.
Laser ultrasonic visualization testing (LUVT) allows the visualization of ultrasonic propagation.
We propose a method for automated LUVT inspection using an anomaly detection approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the deterioration of artificial materials used in structures has become a serious social issue, increasing the importance of inspections. Non-destructive testing is gaining increased demand due to its capability to inspect for defects and deterioration in structures while preserving their functionality. Among these, Laser Ultrasonic Visualization Testing (LUVT) stands out because it allows the visualization of ultrasonic propagation. This makes it visually straightforward to detect defects, thereby enhancing inspection efficiency. With the increasing number of the deterioration structures, challenges such as a shortage of inspectors and increased workload in non-destructive testing have become more apparent. Efforts to address these challenges include exploring automated inspection using machine learning. However, the lack of anomalous data with defects poses a barrier to improving the accuracy of automated inspection through machine learning. Therefore, in this study, we propose a method for automated LUVT inspection using an anomaly detection approach with a diffusion model that can be trained solely on negative examples (defect-free data). We experimentally confirmed that our proposed method improves defect detection and localization compared to general object detection algorithms used previously.
Related papers
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - ATAC-Net: Zoomed view works better for Anomaly Detection [1.024113475677323]
ATAC-Net is a framework that trains to detect anomalies from a minimal set of known prior anomalies.
We substantiate its superiority to some of the current state-of-the-art techniques in a comparable setting.
arXiv Detail & Related papers (2024-06-20T15:18:32Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Segment Anything in Defect Detection [38.85728242930962]
DefectSAM is a novel approach for segmenting defects on highly noisy thermal images.
It surpasses existing state-of-the-art segmentation algorithms and achieves significant improvements in defect detection rates.
arXiv Detail & Related papers (2023-11-17T00:28:19Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.