論文の概要: MentalManip: A Dataset For Fine-grained Analysis of Mental Manipulation in Conversations
- arxiv url: http://arxiv.org/abs/2405.16584v1
- Date: Sun, 26 May 2024 14:27:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:19:32.322005
- Title: MentalManip: A Dataset For Fine-grained Analysis of Mental Manipulation in Conversations
- Title(参考訳): メンタルマニプ:会話におけるメンタルマニピュレーションのきめ細かい分析のためのデータセット
- Authors: Yuxin Wang, Ivory Yang, Saeed Hassanpour, Soroush Vosoughi,
- Abstract要約: 心的操作は対人会話において重要な虐待形態である。
本研究は、4000ドルの注釈付き映画対話からなる、$rm M Small entalM Small anip$という新しいデータセットを紹介する。
このデータセットは、精神的な操作の包括的な分析を可能にし、操作に使用されるテクニックと、被害者がターゲットとする脆弱性の両方をピンポイントする。
- 参考スコア(独自算出の注目度): 41.661208833153225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental manipulation, a significant form of abuse in interpersonal conversations, presents a challenge to identify due to its context-dependent and often subtle nature. The detection of manipulative language is essential for protecting potential victims, yet the field of Natural Language Processing (NLP) currently faces a scarcity of resources and research on this topic. Our study addresses this gap by introducing a new dataset, named ${\rm M{\small ental}M{\small anip}}$, which consists of $4,000$ annotated movie dialogues. This dataset enables a comprehensive analysis of mental manipulation, pinpointing both the techniques utilized for manipulation and the vulnerabilities targeted in victims. Our research further explores the effectiveness of leading-edge models in recognizing manipulative dialogue and its components through a series of experiments with various configurations. The results demonstrate that these models inadequately identify and categorize manipulative content. Attempts to improve their performance by fine-tuning with existing datasets on mental health and toxicity have not overcome these limitations. We anticipate that ${\rm M{\small ental}M{\small anip}}$ will stimulate further research, leading to progress in both understanding and mitigating the impact of mental manipulation in conversations.
- Abstract(参考訳): 対人会話における重要な虐待形態である心的操作は、文脈に依存し、しばしば微妙な性質のために識別することが困難である。
マニピュティブ言語の検出は潜在的な犠牲者を保護するために不可欠であるが、自然言語処理(NLP)分野は現在、このトピックに関するリソースや研究の不足に直面している。
我々の研究は、4000ドルの注釈付き映画対話からなる${\rm M{\small ental}M{\small anip}}$という新しいデータセットを導入することで、このギャップに対処する。
このデータセットは、精神的な操作の包括的な分析を可能にし、操作に使用されるテクニックと、被害者がターゲットとする脆弱性の両方をピンポイントする。
本研究は, 各種構成を用いた一連の実験を通して, 操作対話とその構成要素を認識する上で, 先行モデルの有効性について検討する。
その結果,これらのモデルでは操作内容の同定と分類が不十分であることが示唆された。
メンタルヘルスと毒性に関する既存のデータセットを微調整してパフォーマンスを向上させる試みは、これらの制限を克服していない。
我々は、${\rm M{\small ental}M{\small anip}}$がさらなる研究を刺激し、会話における精神的操作の影響の理解と軽減の両面で進展すると予想している。
関連論文リスト
- Emotion-Aware Response Generation Using Affect-Enriched Embeddings with LLMs [0.585143166250719]
本研究は,精神医学的応用における大規模言語モデル(LLM)の感情的・文脈的理解を高めることの課題に対処する。
LLAMA 2、Flan-T5、ChatGPT 3.0、ChatGPT 4.0といった最先端のLLMと、複数の感情レキシコンを統合する新しいフレームワークを導入する。
一次データセットは、カウンセリング・アンド・サイコセラピー・データベースから2000以上の治療セッションの書き起こしを含み、不安、うつ病、トラウマ、中毒に関する議論をカバーしている。
論文 参考訳(メタデータ) (2024-10-02T08:01:05Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts [27.240795549935463]
ソーシャルメディアからデータを収集し,認知経路抽出の課題を確立した。
我々は、精神療法士が重要な情報を素早く把握できるよう、テキスト要約タスクを構築した。
本研究では,ディープラーニングモデルと大規模言語モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-04-17T14:55:27Z) - Reliability Analysis of Psychological Concept Extraction and
Classification in User-penned Text [9.26840677406494]
私たちはLoSTデータセットを使って、Redditユーザーの投稿に低い自尊心があることを示唆するニュアンスのあるテキストキューをキャプチャします。
以上の結果から, PLM の焦点を Trigger と Consequences からより包括的な説明に移行する必要性が示唆された。
論文 参考訳(メタデータ) (2024-01-12T17:19:14Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - Automated Utterance Labeling of Conversations Using Natural Language
Processing [18.46338683950194]
本研究では,NLP法によって生成される自動ラベルが,成人移行における会話の文脈において,人間のラベルにどのように匹敵するかを考察した。
その結果,ドメイン適応型深層学習法(RoBERTa-CON)は,他の機械学習手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-12T23:03:45Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z) - Deep Recurrent Encoder: A scalable end-to-end network to model brain
signals [122.1055193683784]
複数の被験者の脳応答を一度に予測するために訓練されたエンドツーエンドのディープラーニングアーキテクチャを提案する。
1時間の読解作業で得られた大脳磁図(meg)記録を用いて,このアプローチを検証した。
論文 参考訳(メタデータ) (2021-03-03T11:39:17Z) - Looking At The Body: Automatic Analysis of Body Gestures and
Self-Adaptors in Psychological Distress [0.9624643581968987]
心理学的苦痛は社会において重要かつ増大している問題である。
ポーズ推定とディープラーニングの最近の進歩は、このモダリティとドメインに対する新しいアプローチを可能にしている。
本研究では,自己適応者のサブセットである自己適応とフィジットを自動的に検出する新たな手法を提案する。
論文 参考訳(メタデータ) (2020-07-31T02:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。