Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale
- URL: http://arxiv.org/abs/2405.16608v1
- Date: Sun, 26 May 2024 15:37:19 GMT
- Title: Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale
- Authors: Pol Timmer, Koen Minartz, Vlado Menkovski,
- Abstract summary: Crystallization processes at the mesoscopic scale are of particular interest in materials science and metallurgy.
We introduce the Crystal Growth Neural Emulator (CGNE), a probabilistic model for efficient crystal growth at the mesoscopic scale.
CGNE delivers a factor of 11 improvement in inference time and performance gains compared with recent state-of-the-art probabilistic models for dynamical systems.
- Score: 4.271235935891555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crystallization processes at the mesoscopic scale, where faceted, dendritic growth, and multigrain formation can be observed, are of particular interest within materials science and metallurgy. These processes are highly nonlinear, stochastic, and sensitive to small perturbations of system parameters and initial conditions. Methods for the simulation of these processes have been developed using discrete numerical models, but these are computationally expensive. This work aims to scale crystal growth simulation with a machine learning emulator. Specifically, autoregressive latent variable models are well suited for modeling the joint distribution over system parameters and the crystallization trajectories. However, successfully training such models is challenging due to the stochasticity and sensitivity of the system. Existing approaches consequently fail to produce diverse and faithful crystallization trajectories. In this paper, we introduce the Crystal Growth Neural Emulator (CGNE), a probabilistic model for efficient crystal growth emulation at the mesoscopic scale that overcomes these challenges. We validate CGNE results using the morphological properties of the crystals produced by numerical simulation. CGNE delivers a factor of 11 improvement in inference time and performance gains compared with recent state-of-the-art probabilistic models for dynamical systems.
Related papers
- Micro-Macro Consistency in Multiscale Modeling: Score-Based Model
Assisted Sampling of Fast/Slow Dynamical Systems [0.0]
In the study of physics-based multi-time-scale dynamical systems, techniques have been developed for enhancing sampling.
In the field of Machine Learning, a generic goal of generative models is to sample from a target density, after training on empirical samples from this density.
In this work, we show that that SGMs can be used in such a coupling framework to improve sampling in multiscale dynamical systems.
arXiv Detail & Related papers (2023-12-10T00:46:37Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Equivariant Parameter Sharing for Porous Crystalline Materials [4.271235935891555]
Existing methods for crystal property prediction either have constraints that are too restrictive or only incorporate symmetries between unit cells.
We develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure.
Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of symmetry results in a more efficient model.
arXiv Detail & Related papers (2023-04-04T08:33:13Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Bayesian Force Fields from Active Learning for Simulation of
Inter-Dimensional Transformation of Stanene [3.708456605408296]
We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels.
This allows for automated active learning of models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation.
arXiv Detail & Related papers (2020-08-26T20:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.