DPHGNN: A Dual Perspective Hypergraph Neural Networks
- URL: http://arxiv.org/abs/2405.16616v1
- Date: Sun, 26 May 2024 16:08:55 GMT
- Title: DPHGNN: A Dual Perspective Hypergraph Neural Networks
- Authors: Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, Tanmoy Chakraborty,
- Abstract summary: We propose DPHGNN, a novel dual-perspective HGNN that introduces equivariant operator learning to capture lower-order semantics.
We benchmark DPHGNN over eight benchmark hypergraph datasets for the semi-supervised hypernode classification task.
DPHGNN was deployed by our partner e-commerce company for the Return-to-Origin (RTO) prediction task, which shows 7% higher macro F1-Score than the best baseline.
- Score: 15.079509975815572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message passing on hypergraphs has been a standard framework for learning higher-order correlations between hypernodes. Recently-proposed hypergraph neural networks (HGNNs) can be categorized into spatial and spectral methods based on their design choices. In this work, we analyze the impact of change in hypergraph topology on the suboptimal performance of HGNNs and propose DPHGNN, a novel dual-perspective HGNN that introduces equivariant operator learning to capture lower-order semantics by inducing topology-aware spatial and spectral inductive biases. DPHGNN employs a unified framework to dynamically fuse lower-order explicit feature representations from the underlying graph into the super-imposed hypergraph structure. We benchmark DPHGNN over eight benchmark hypergraph datasets for the semi-supervised hypernode classification task and obtain superior performance compared to seven state-of-the-art baselines. We also provide a theoretical framework and a synthetic hypergraph isomorphism test to express the power of spatial HGNNs and quantify the expressivity of DPHGNN beyond the Generalized Weisfeiler Leman (1-GWL) test. Finally, DPHGNN was deployed by our partner e-commerce company for the Return-to-Origin (RTO) prediction task, which shows ~7% higher macro F1-Score than the best baseline.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - A Unified View Between Tensor Hypergraph Neural Networks And Signal
Denoising [7.083679120873857]
We show that the tensor-hypergraph convolutional network (T-HGCN) has emerged as a powerful architecture for preserving higher-order interactions on hypergraphs.
We further design a tensor-hypergraph iterative network (T-HGIN) based on the HyperGSD problem, which takes advantage of a multi-step updating scheme in every single layer.
arXiv Detail & Related papers (2023-09-15T13:19:31Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks [8.777765815864367]
Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains.
We propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks.
Experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets.
arXiv Detail & Related papers (2021-05-03T15:48:34Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.