Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
- URL: http://arxiv.org/abs/2405.16644v1
- Date: Sun, 26 May 2024 17:43:30 GMT
- Title: Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
- Authors: Sergey Samsonov, Eric Moulines, Qi-Man Shao, Zhuo-Song Zhang, Alexey Naumov,
- Abstract summary: We prove the validity of the confidence intervals for parameter estimation with LSA based on multiplier bootstrap.
We illustrate our findings in the setting of temporal difference learning with linear function approximation.
- Score: 15.041074872715752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we obtain the Berry-Esseen bound for multivariate normal approximation for the Polyak-Ruppert averaged iterates of the linear stochastic approximation (LSA) algorithm with decreasing step size. Our findings reveal that the fastest rate of normal approximation is achieved when setting the most aggressive step size $\alpha_{k} \asymp k^{-1/2}$. Moreover, we prove the non-asymptotic validity of the confidence intervals for parameter estimation with LSA based on multiplier bootstrap. This procedure updates the LSA estimate together with a set of randomly perturbed LSA estimates upon the arrival of subsequent observations. We illustrate our findings in the setting of temporal difference learning with linear function approximation.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Asymptotic Time-Uniform Inference for Parameters in Averaged Stochastic Approximation [23.89036529638614]
We study time-uniform statistical inference for parameters in approximation (SA)
We analyze the almost-sure convergence rates of the averaged iterates to a scaled sum of Gaussians in both linear and nonlinear SA problems.
arXiv Detail & Related papers (2024-10-19T10:27:26Z) - Effectiveness of Constant Stepsize in Markovian LSA and Statistical
Inference [9.689344942945652]
We study the effectiveness of using a constant stepsize in statistical inference via linear approximation (LSA) algorithms with Markovian data.
Our results show that using a constant stepsize enjoys easy hyper parameter tuning, fast convergence, and consistently better CI coverage, especially when data is limited.
arXiv Detail & Related papers (2023-12-18T02:51:57Z) - Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability [17.771354881467435]
We show that a simple algorithm with a universal and instance-independent step size is sufficient to obtain near-optimal variance and bias terms.
Our proof technique is based on refined error bounds for linear approximation together with the novel stability result for the product of random matrices.
arXiv Detail & Related papers (2023-10-22T12:37:25Z) - Variational sparse inverse Cholesky approximation for latent Gaussian
processes via double Kullback-Leibler minimization [6.012173616364571]
We combine a variational approximation of the posterior with a similar and efficient SIC-restricted Kullback-Leibler-optimal approximation of the prior.
For this setting, our variational approximation can be computed via gradient descent in polylogarithmic time per iteration.
We provide numerical comparisons showing that the proposed double-Kullback-Leibler-optimal Gaussian-process approximation (DKLGP) can sometimes be vastly more accurate for stationary kernels than alternative approaches.
arXiv Detail & Related papers (2023-01-30T21:50:08Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
We consider a smooth and strongly convex objective function using a Newton method.
We show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage.
arXiv Detail & Related papers (2022-04-20T07:14:21Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.