論文の概要: Comments on Friedman's Method for Class Distribution Estimation
- arxiv url: http://arxiv.org/abs/2405.16666v1
- Date: Sun, 26 May 2024 19:13:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:58:15.974340
- Title: Comments on Friedman's Method for Class Distribution Estimation
- Title(参考訳): クラス分布推定のためのフリードマン法に関するコメント
- Authors: Dirk Tasche,
- Abstract要約: クラス分布推定の目的は、クラスラベルの観測を伴わないテストデータセットにおいて、事前クラス確率の値を決定することである。
クラス分布推定のための線形方程式系を設計するための一般的な枠組みの文脈において、フリードマンの手法の特性と、Friedman(文献ではDeBias法と呼ばれる)によって言及された別のアプローチについて論じる。
- 参考スコア(独自算出の注目度): 1.3053649021965603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The purpose of class distribution estimation (also known as quantification) is to determine the values of the prior class probabilities in a test dataset without class label observations. A variety of methods to achieve this have been proposed in the literature, most of them based on the assumption that the distributions of the training and test data are related through prior probability shift (also known as label shift). Among these methods, Friedman's method has recently been found to perform relatively well both for binary and multi-class quantification. We discuss the properties of Friedman's method and another approach mentioned by Friedman (called DeBias method in the literature) in the context of a general framework for designing linear equation systems for class distribution estimation.
- Abstract(参考訳): クラス分布推定(量化とも呼ばれる)の目的は、クラスラベルの観測を伴わないテストデータセットにおいて、事前クラス確率の値を決定することである。
それらの多くは、トレーニングとテストデータの分布が事前確率シフト(ラベルシフトとも呼ばれる)を通して関連しているという仮定に基づいている。
これらの方法のうち、フリードマンの手法は、最近二項量子化と多項量子化の両方に対して比較的よく機能することが判明した。
クラス分布推定のための線形方程式系を設計するための一般的な枠組みの文脈において、フリードマンの手法の特性と、Friedman(文献ではDeBias法と呼ばれる)によって言及された別のアプローチについて論じる。
関連論文リスト
- Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
本稿では,分類モデルに適したランクベーススコア関数を用いた新しいコンフォメーション予測手法を提案する。
提案手法は,そのサイズを管理しながら,所望のカバレッジ率を達成する予測セットを構築する。
コントリビューションには、新しい共形予測法、理論的解析、経験的評価が含まれる。
論文 参考訳(メタデータ) (2024-07-05T10:43:41Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Invariance assumptions for class distribution estimation [1.3053649021965603]
本研究では,データセットシフトによるクラス分布推定の問題について検討する。
トレーニングデータセットでは、機能とクラスラベルの両方が観察され、テストデータセットでは、機能のみが観察される。
論文 参考訳(メタデータ) (2023-11-28T20:57:10Z) - Bayesian Quantification with Black-Box Estimators [1.599072005190786]
調整された分類と数、ブラックボックスシフト推定器、不変比推定器などのアプローチでは、クラス分布を推定し、弱い仮定の下で保証を得る補助的(および潜在的に偏りのある)ブラックボックス分類器を用いる。
これら全てのアルゴリズムが特定のベイズ連鎖モデルにおける推論と密接に関連していることを示し、仮定された基底構造生成過程を近似する。
次に,導入モデルに対する効率的なマルコフ・モンテカルロサンプリング手法について検討し,大容量データ限界における一貫性の保証を示す。
論文 参考訳(メタデータ) (2023-02-17T22:10:04Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
本研究は,バッグにトレーニングインスタンスを提供するMCLLP設定によるマルチクラス学習に対処する。
既存のほとんどのMCLLPメソッドは、インスタンスの予測や擬似ラベルの割り当てにバッグワイズな制約を課している。
経験的リスク最小化フレームワークを用いたリスク一貫性手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T03:49:04Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z) - On Contrastive Learning for Likelihood-free Inference [20.49671736540948]
Likelihood-freeメソッドは、可能性を評価することができるシミュレータモデルでパラメータ推論を行う。
この可能性のない問題の方法の1つのクラスは、パラメータ観測サンプルのペアを区別するために分類器を使用する。
別の一般的な手法のクラスは、パラメータの後方に直接条件分布を適合させ、特に最近の変種はフレキシブルな神経密度推定器の使用を可能にする。
論文 参考訳(メタデータ) (2020-02-10T13:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。