Exploring Fairness in Educational Data Mining in the Context of the Right to be Forgotten
- URL: http://arxiv.org/abs/2405.16798v2
- Date: Wed, 29 May 2024 16:52:43 GMT
- Title: Exploring Fairness in Educational Data Mining in the Context of the Right to be Forgotten
- Authors: Wei Qian, Aobo Chen, Chenxu Zhao, Yangyi Li, Mengdi Huai,
- Abstract summary: In education data mining (EDM) communities, machine learning has achieved remarkable success in discovering patterns and structures to tackle educational challenges.
With the increasing demand for the right to be forgotten, there is a growing need for machine learning models to forget sensitive data and its impact.
We introduce a novel class of selective forgetting attacks designed to compromise the fairness of learning models while maintaining their predictive accuracy.
- Score: 16.03102654663785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In education data mining (EDM) communities, machine learning has achieved remarkable success in discovering patterns and structures to tackle educational challenges. Notably, fairness and algorithmic bias have gained attention in learning analytics of EDM. With the increasing demand for the right to be forgotten, there is a growing need for machine learning models to forget sensitive data and its impact, particularly within the realm of EDM. The paradigm of selective forgetting, also known as machine unlearning, has been extensively studied to address this need by eliminating the influence of specific data from a pre-trained model without complete retraining. However, existing research assumes that interactive data removal operations are conducted in secure and reliable environments, neglecting potential malicious unlearning requests to undermine the fairness of machine learning systems. In this paper, we introduce a novel class of selective forgetting attacks designed to compromise the fairness of learning models while maintaining their predictive accuracy, thereby preventing the model owner from detecting the degradation in model performance. Additionally, we propose an innovative optimization framework for selective forgetting attacks, capable of generating malicious unlearning requests across various attack scenarios. We validate the effectiveness of our proposed selective forgetting attacks on fairness through extensive experiments using diverse EDM datasets.
Related papers
- From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models [9.380866972744633]
This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID)
ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests.
We also introduce an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure.
arXiv Detail & Related papers (2024-11-26T05:42:46Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
We conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of unlearned data.
Under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample.
The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data.
arXiv Detail & Related papers (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services [31.347825826778276]
We try to explore the potential threats posed by unlearning services in Machine Learning (ML)
We propose two strategies that leverage over-unlearning to measure the impact on the trade-off balancing.
Results indicate significant potential for both strategies to undermine model efficacy in unlearning scenarios.
arXiv Detail & Related papers (2023-09-15T08:00:45Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.