Convergence of SGD with momentum in the nonconvex case: A time window-based analysis
- URL: http://arxiv.org/abs/2405.16954v3
- Date: Fri, 27 Dec 2024 13:23:03 GMT
- Title: Convergence of SGD with momentum in the nonconvex case: A time window-based analysis
- Authors: Junwen Qiu, Bohao Ma, Andre Milzarek,
- Abstract summary: The gradient exponent descent method with momentum (SGDM) is a common approach for solving large-scale optimization problems.
Despite its popularity, SGDM remains less understood in non convergence scenarios.
- Score: 2.048226951354646
- License:
- Abstract: The stochastic gradient descent method with momentum (SGDM) is a common approach for solving large-scale and stochastic optimization problems. Despite its popularity, the convergence behavior of SGDM remains less understood in nonconvex scenarios. This is primarily due to the absence of a sufficient descent property and challenges in simultaneously controlling the momentum and stochastic errors in an almost sure sense. To address these challenges, we investigate the behavior of SGDM over specific time windows, rather than examining the descent of consecutive iterates as in traditional studies. This time window-based approach simplifies the convergence analysis and enables us to establish the iterate convergence result for SGDM under the {\L}ojasiewicz property. We further provide local convergence rates which depend on the underlying {\L}ojasiewicz exponent and the utilized step size schemes.
Related papers
- Algorithmic Stability of Stochastic Gradient Descent with Momentum under Heavy-Tailed Noise [20.922456964393213]
We establish generalization bounds for SGD with momentum (SGDm) under heavy-tailed noise.
For quadratic loss functions, we show that SGDm admits a worse generalization bound in the presence of momentum and heavy tails.
We develop a uniform-in-time discretization error bound, which to our knowledge, is the first result of its kind for SDEs with degenerate noise.
arXiv Detail & Related papers (2025-02-02T19:25:48Z) - Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation [51.248784084461334]
We prove new convergence rates for a generalized version of Nesterov acceleration underrho conditions.
Our analysis reduces the dependence on the strong growth constant from $$ to $sqrt$ as compared to prior work.
arXiv Detail & Related papers (2024-04-03T00:41:19Z) - From Gradient Flow on Population Loss to Learning with Stochastic
Gradient Descent [50.4531316289086]
Gradient Descent (SGD) has been the method of choice for learning large-scale non-root models.
An overarching paper is providing general conditions SGD converges, assuming that GF on the population loss converges.
We provide a unified analysis for GD/SGD not only for classical settings like convex losses, but also for more complex problems including Retrieval Matrix sq-root.
arXiv Detail & Related papers (2022-10-13T03:55:04Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Benign Underfitting of Stochastic Gradient Descent [72.38051710389732]
We study to what extent may gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit training data.
We analyze the closely related with-replacement SGD, for which an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate.
arXiv Detail & Related papers (2022-02-27T13:25:01Z) - On the Convergence of mSGD and AdaGrad for Stochastic Optimization [0.696125353550498]
convex descent (SGD) has been intensively developed and extensively applied in machine learning in the past decade.
Some modified SGD-type algorithms, which outperform the SGD in many competitions and applications in terms of convergence rate and accuracy, such as momentum-based SGD (mSGD) and adaptive gradient optimization (AdaGrad)
We focus on convergence analysis of mSGD and AdaGrad for any smooth (possibly non-possibly non-possibly non-possibly) loss functions in machine learning.
arXiv Detail & Related papers (2022-01-26T22:02:21Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - Convergence of stochastic gradient descent schemes for
Lojasiewicz-landscapes [0.0]
We consider convergence of gradient descent schemes under weak assumptions on the underlying landscape.
In particular, we show that for neural networks with analytic activation function such as softplus, sigmoid and the hyperbolic tangent, SGD converges on the event of staying bounded.
arXiv Detail & Related papers (2021-02-16T12:42:25Z) - Momentum via Primal Averaging: Theoretical Insights and Learning Rate
Schedules for Non-Convex Optimization [10.660480034605241]
Momentum methods are now used pervasively within the machine learning community for non-training models such as deep neural networks.
In this work we develop a Lyapunov analysis of SGD with momentum, by utilizing the SGD equivalent rewriting of the primal SGD method known as the SGDSPA) form.
arXiv Detail & Related papers (2020-10-01T13:46:32Z) - Convergence rates and approximation results for SGD and its
continuous-time counterpart [16.70533901524849]
This paper proposes a thorough theoretical analysis of convex Gradient Descent (SGD) with non-increasing step sizes.
First, we show that the SGD can be provably approximated by solutions of inhomogeneous Differential Equation (SDE) using coupling.
Recent analyses of deterministic and optimization methods by their continuous counterpart, we study the long-time behavior of the continuous processes at hand and non-asymptotic bounds.
arXiv Detail & Related papers (2020-04-08T18:31:34Z) - On the Generalization of Stochastic Gradient Descent with Momentum [84.54924994010703]
momentum-based accelerated variants of gradient descent (SGD) are widely used when training machine learning models.
We first show that there exists a convex loss function for which the stability gap for multiple epochs of SGD with standard heavy-ball momentum (SGDM) becomes unbounded.
For smooth Lipschitz loss functions, we analyze a modified momentum-based update rule, i.e., SGD with early momentum (SGDEM) under a broad range of step-sizes.
arXiv Detail & Related papers (2018-09-12T17:02:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.