論文の概要: Collective Perception Datasets for Autonomous Driving: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2405.16973v1
- Date: Mon, 27 May 2024 09:08:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:11:45.364852
- Title: Collective Perception Datasets for Autonomous Driving: A Comprehensive Review
- Title(参考訳): 自律運転のための集合認識データセット:総合的なレビュー
- Authors: Sven Teufel, Jörg Gamerdinger, Jan-Patrick Kirchner, Georg Volk, Oliver Bringmann,
- Abstract要約: 本稿では,自律運転の文脈における集合認識データセットの包括的レビューを行う。
この研究は、すべてのデータセットの重要な基準を特定し、その強さ、弱点、異常を提示することを目的としている。
- 参考スコア(独自算出の注目度): 0.5326090003728084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure safe operation of autonomous vehicles in complex urban environments, complete perception of the environment is necessary. However, due to environmental conditions, sensor limitations, and occlusions, this is not always possible from a single point of view. To address this issue, collective perception is an effective method. Realistic and large-scale datasets are essential for training and evaluating collective perception methods. This paper provides the first comprehensive technical review of collective perception datasets in the context of autonomous driving. The survey analyzes existing V2V and V2X datasets, categorizing them based on different criteria such as sensor modalities, environmental conditions, and scenario variety. The focus is on their applicability for the development of connected automated vehicles. This study aims to identify the key criteria of all datasets and to present their strengths, weaknesses, and anomalies. Finally, this survey concludes by making recommendations regarding which dataset is most suitable for collective 3D object detection, tracking, and semantic segmentation.
- Abstract(参考訳): 複雑な都市環境における自動運転車の安全な運転を確保するためには、環境の完全な認識が必要である。
しかし、環境条件、センサーの制限、閉塞のため、これは必ずしも単一の観点からは可能ではない。
この問題に対処するためには、集団認識が効果的な方法である。
現実的かつ大規模なデータセットは、集合認識法の訓練と評価に不可欠である。
本稿では,自律運転の文脈における集合認識データセットの総合的技術的レビューを初めて提供する。
この調査は既存のV2VおよびV2Xデータセットを分析し、センサーのモダリティ、環境条件、シナリオの多様性といった異なる基準に基づいて分類する。
その焦点は、コネクテッド・オートマチック・車両の開発に応用することにある。
本研究の目的は,すべてのデータセットの重要な基準を特定し,その強度,弱点,異常を提示することである。
最後に、この調査は、どのデータセットが総合的な3Dオブジェクトの検出、追跡、セマンティックセグメンテーションに最も適しているかを推奨することで締めくくります。
関連論文リスト
- Collaborative Perception Datasets in Autonomous Driving: A Survey [0.0]
この論文は様々なデータセットを体系的に分析し、多様性、センサーの設定、品質、公開可用性、下流タスクへの適用性といった側面に基づいて比較する。
データセット開発におけるプライバシとセキュリティの懸念に対処することの重要性は、データ共有とデータセット生成に関して強調されている。
論文 参考訳(メタデータ) (2024-04-22T09:36:17Z) - D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation [6.890077875318333]
Driver to Evaluationデータセット(D2E)は、自律的な意思決定データセットである。
運転状態、車両状態、環境状況、および人間レビュアーによる評価スコアに関するデータが含まれている。
D2Eは、人間のドライバーファクターから評価結果をカバーする1100以上の対話運転ケースデータを含んでいる。
論文 参考訳(メタデータ) (2024-04-12T21:29:18Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - Occlusion-Aware 2D and 3D Centerline Detection for Urban Driving via
Automatic Label Generation [4.921246328739616]
本研究は,高ダイナミックな都市運転シナリオ下での2次元および3次元の道路トポロジ情報を決定する戦略を探求し,特定することを目的とする。
この探索を容易にするために、100万近い自動ラベル付きデータフレームからなる実質的なデータセットを導入する。
論文 参考訳(メタデータ) (2023-11-03T17:20:34Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
意思決定は、ハイレベルな自動走行に向けた重要なモジュールの1つである。
データ駆動による意思決定アプローチは、ますます注目を集めています。
本研究では、車両、環境、運転者関連データの最先端データセットを比較した。
論文 参考訳(メタデータ) (2023-06-29T08:42:18Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Perception Datasets for Anomaly Detection in Autonomous Driving: A
Survey [4.731404257629232]
異常検出手法の評価のために複数の知覚データセットが作成されている。
このサーベイは構造化され、私たちの知る限り、自律運転における異常検出のための知覚データセットの完全な概要と比較を提供する。
論文 参考訳(メタデータ) (2023-02-06T14:07:13Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - Grounded Situation Recognition [56.18102368133022]
画像の構造的要約を生成することを必要とする課題であるグラウンドドコンディション認識(GSR)を導入する。
GSRはセマンティック・サリエンシの識別、大規模で多様なエンティティの分類とローカライズという重要な技術的課題を提示している。
我々は,条件付きクエリ,視覚連鎖,接地型セマンティック・アウェアネス・イメージ検索の3つのモデルによって実現される3つの将来方向について,最初の知見を示す。
論文 参考訳(メタデータ) (2020-03-26T17:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。