論文の概要: D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation
- arxiv url: http://arxiv.org/abs/2406.01598v1
- Date: Fri, 12 Apr 2024 21:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:19:53.637252
- Title: D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation
- Title(参考訳): D2E-ドライバ状態と人的評価を含む自律的意思決定データセット
- Authors: Zehong Ke, Yanbo Jiang, Yuning Wang, Hao Cheng, Jinhao Li, Jianqiang Wang,
- Abstract要約: Driver to Evaluationデータセット(D2E)は、自律的な意思決定データセットである。
運転状態、車両状態、環境状況、および人間レビュアーによる評価スコアに関するデータが含まれている。
D2Eは、人間のドライバーファクターから評価結果をカバーする1100以上の対話運転ケースデータを含んでいる。
- 参考スコア(独自算出の注目度): 6.890077875318333
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advancement of deep learning technology, data-driven methods are increasingly used in the decision-making of autonomous driving, and the quality of datasets greatly influenced the model performance. Although current datasets have made significant progress in the collection of vehicle and environment data, emphasis on human-end data including the driver states and human evaluation is not sufficient. In addition, existing datasets consist mostly of simple scenarios such as car following, resulting in low interaction levels. In this paper, we introduce the Driver to Evaluation dataset (D2E), an autonomous decision-making dataset that contains data on driver states, vehicle states, environmental situations, and evaluation scores from human reviewers, covering a comprehensive process of vehicle decision-making. Apart from regular agents and surrounding environment information, we not only collect driver factor data including first-person view videos, physiological signals, and eye attention data, but also provide subjective rating scores from 40 human volunteers. The dataset is mixed of driving simulator scenes and real-road ones. High-interaction situations are designed and filtered to ensure behavior diversity. Through data organization, analysis, and preprocessing, D2E contains over 1100 segments of interactive driving case data covering from human driver factor to evaluation results, supporting the development of data-driven decision-making related algorithms.
- Abstract(参考訳): ディープラーニング技術の進歩に伴い、自律運転の意思決定にデータ駆動方式がますます使われ、データセットの品質がモデルの性能に大きな影響を与えている。
現在のデータセットは、車両や環境データの収集において大きな進歩を遂げているが、運転状態や人的評価を含む、人為的なデータに重点を置いているだけでは不十分である。
さらに、既存のデータセットは、カーフォローのような単純なシナリオで構成されており、結果としてインタラクションレベルが低い。
本稿では、ドライバー状態、車両の状態、環境状況、および人間レビュアーによる評価スコアを含む自律的意思決定データセットである、ドライバ・トゥ・評価データセット(D2E)を紹介する。
一般エージェントや周囲の環境情報とは別に, 一人称視点映像, 生理信号, 目視データなどのドライバーファクターデータを収集するだけでなく, 40人のボランティアの主観的評価スコアも提供する。
データセットはシミュレータのシーンとリアルタイムのシーンが混在している。
ハイインタラクションの状況は、振る舞いの多様性を保証するために設計され、フィルタリングされる。
データ編成、分析、前処理を通じて、D2Eは人間のドライバーファクターから評価結果まで1100以上の対話型駆動ケースデータを格納し、データ駆動意思決定関連アルゴリズムの開発をサポートする。
関連論文リスト
- Collective Perception Datasets for Autonomous Driving: A Comprehensive Review [0.5326090003728084]
本稿では,自律運転の文脈における集合認識データセットの包括的レビューを行う。
この研究は、すべてのデータセットの重要な基準を特定し、その強さ、弱点、異常を提示することを目的としている。
論文 参考訳(メタデータ) (2024-05-27T09:08:55Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
我々は、自動走行アプリケーションの改善を継続的に行う方法で、生成データ生産を拡大することが証明された最初のモデルであるSubjectDriveを提案する。
本研究では, 多様なデータを生成するために, 多様な外部データソースを活用可能な, 主観制御機構を備えた新しいモデルを開発する。
論文 参考訳(メタデータ) (2024-03-28T14:07:13Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook [24.691922611156937]
複数の視点から265個の自律走行データセットを網羅的に検討した。
我々は、新しいデータセットを作成するためのガイドとしても使えるデータセットの影響を評価するための新しい指標を紹介します。
我々は、将来の自動運転データセットの現在の課題と開発動向について論じる。
論文 参考訳(メタデータ) (2024-01-02T22:35:33Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
意思決定は、ハイレベルな自動走行に向けた重要なモジュールの1つである。
データ駆動による意思決定アプローチは、ますます注目を集めています。
本研究では、車両、環境、運転者関連データの最先端データセットを比較した。
論文 参考訳(メタデータ) (2023-06-29T08:42:18Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
本稿では,自動車運転データの大規模集合に対する包括的データクラスタリングフレームワークを提案する。
提案手法では,トラヒック内エージェントオブジェクトとマップ情報の両方を含むトラフィック要素を網羅的に検討する。
新たに設計されたデータクラスタリング評価メトリクスは、データ拡張に基づくものであるため、精度評価には人間のラベル付きデータセットは必要ない。
論文 参考訳(メタデータ) (2021-03-30T06:22:40Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。