論文の概要: Collaborative Perception Datasets in Autonomous Driving: A Survey
- arxiv url: http://arxiv.org/abs/2404.14022v1
- Date: Mon, 22 Apr 2024 09:36:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:35:57.077039
- Title: Collaborative Perception Datasets in Autonomous Driving: A Survey
- Title(参考訳): 自動運転における協調的知覚データセット:調査
- Authors: Melih Yazgan, Mythra Varun Akkanapragada, J. Marius Zoellner,
- Abstract要約: この論文は様々なデータセットを体系的に分析し、多様性、センサーの設定、品質、公開可用性、下流タスクへの適用性といった側面に基づいて比較する。
データセット開発におけるプライバシとセキュリティの懸念に対処することの重要性は、データ共有とデータセット生成に関して強調されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This survey offers a comprehensive examination of collaborative perception datasets in the context of Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-to-Everything (V2X). It highlights the latest developments in large-scale benchmarks that accelerate advancements in perception tasks for autonomous vehicles. The paper systematically analyzes a variety of datasets, comparing them based on aspects such as diversity, sensor setup, quality, public availability, and their applicability to downstream tasks. It also highlights the key challenges such as domain shift, sensor setup limitations, and gaps in dataset diversity and availability. The importance of addressing privacy and security concerns in the development of datasets is emphasized, regarding data sharing and dataset creation. The conclusion underscores the necessity for comprehensive, globally accessible datasets and collaborative efforts from both technological and research communities to overcome these challenges and fully harness the potential of autonomous driving.
- Abstract(参考訳): この調査は、V2I、V2V、V2X、V2Xの文脈における協調認識データセットの総合的な検証を提供する。
自動運転車の認識タスクの進歩を加速する大規模なベンチマークの最新の展開を強調している。
この論文は様々なデータセットを体系的に分析し、多様性、センサーの設定、品質、公開可用性、下流タスクへの適用性といった側面に基づいて比較する。
また、ドメインシフト、センサー設定の制限、データセットの多様性と可用性のギャップなど、重要な課題を強調している。
データセット開発におけるプライバシとセキュリティの懸念に対処することの重要性は、データ共有とデータセット生成に関して強調されている。
この結論は、これらの課題を克服し、自動運転の可能性を完全に活用するために、包括的でグローバルにアクセス可能なデータセットと、技術コミュニティと研究コミュニティの協力的努力の必要性を強調している。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - Collective Perception Datasets for Autonomous Driving: A Comprehensive Review [0.5326090003728084]
本稿では,自律運転の文脈における集合認識データセットの包括的レビューを行う。
この研究は、すべてのデータセットの重要な基準を特定し、その強さ、弱点、異常を提示することを目的としている。
論文 参考訳(メタデータ) (2024-05-27T09:08:55Z) - Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey [82.84057882105931]
ジェネレーティブAI(GAI)は、IoT(Internet of Vehicles)におけるインテリジェントモジュールの認知、推論、計画能力を高めることができる。
IoVにおけるGAI, MoE, およびそれらの相互作用応用の基礎を提示する。
我々はIoVにおけるMoEとGAIの統合の可能性について論じ、分散認識とモニタリング、協調的な意思決定と計画、生成モデリングとシミュレーションを含む。
論文 参考訳(メタデータ) (2024-04-25T06:22:21Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook [24.691922611156937]
複数の視点から265個の自律走行データセットを網羅的に検討した。
我々は、新しいデータセットを作成するためのガイドとしても使えるデータセットの影響を評価するための新しい指標を紹介します。
我々は、将来の自動運転データセットの現在の課題と開発動向について論じる。
論文 参考訳(メタデータ) (2024-01-02T22:35:33Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - Rank2Tell: A Multimodal Driving Dataset for Joint Importance Ranking and
Reasoning [19.43430577960824]
本稿では,重要度をランク付けするマルチモーダル・エゴ中心のデータセットである Rank2Tell を紹介し,その重要性の理由を述べる。
クローズドでオープンな様々な視覚的質問応答を用いて、複雑な交通シナリオにおいて、データセットは様々な重要なオブジェクトの様々な意味、空間的、時間的、関係的な属性の密接なアノテーションを提供する。
論文 参考訳(メタデータ) (2023-09-12T20:51:07Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
意思決定は、ハイレベルな自動走行に向けた重要なモジュールの1つである。
データ駆動による意思決定アプローチは、ますます注目を集めています。
本研究では、車両、環境、運転者関連データの最先端データセットを比較した。
論文 参考訳(メタデータ) (2023-06-29T08:42:18Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
我々は,MLに基づく多種多様な研究への道を開くための詳細な測定キャンペーンを実施してきた。
得られたデータセットは、携帯電話(と2つの異なるオペレーター)とサイドリンク無線アクセス技術の両方のために、様々な都市環境にまたがるGPS位置の無線測定を提供する。
私たちは、MLが克服しなければならない課題と、MLが活用できる機能について、データの初期分析を提供しています。
論文 参考訳(メタデータ) (2022-12-20T15:26:39Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - V2X-Sim: A Virtual Collaborative Perception Dataset for Autonomous
Driving [26.961213523096948]
V2X(V2X)は、車両と周囲のあらゆる物体の協調を意味する。
V2X-Simデータセットは、自動運転における最初の大規模協調認識データセットである。
論文 参考訳(メタデータ) (2022-02-17T05:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。