Collective Perception Datasets for Autonomous Driving: A Comprehensive Review
- URL: http://arxiv.org/abs/2405.16973v1
- Date: Mon, 27 May 2024 09:08:55 GMT
- Title: Collective Perception Datasets for Autonomous Driving: A Comprehensive Review
- Authors: Sven Teufel, Jörg Gamerdinger, Jan-Patrick Kirchner, Georg Volk, Oliver Bringmann,
- Abstract summary: This paper provides the first comprehensive review of collective perception datasets in the context of autonomous driving.
The study aims to identify the key criteria of all datasets and to present their strengths, weaknesses, and anomalies.
- Score: 0.5326090003728084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure safe operation of autonomous vehicles in complex urban environments, complete perception of the environment is necessary. However, due to environmental conditions, sensor limitations, and occlusions, this is not always possible from a single point of view. To address this issue, collective perception is an effective method. Realistic and large-scale datasets are essential for training and evaluating collective perception methods. This paper provides the first comprehensive technical review of collective perception datasets in the context of autonomous driving. The survey analyzes existing V2V and V2X datasets, categorizing them based on different criteria such as sensor modalities, environmental conditions, and scenario variety. The focus is on their applicability for the development of connected automated vehicles. This study aims to identify the key criteria of all datasets and to present their strengths, weaknesses, and anomalies. Finally, this survey concludes by making recommendations regarding which dataset is most suitable for collective 3D object detection, tracking, and semantic segmentation.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Collaborative Perception Datasets in Autonomous Driving: A Survey [0.0]
The paper systematically analyzes a variety of datasets, comparing them based on aspects such as diversity, sensor setup, quality, public availability, and their applicability to downstream tasks.
The importance of addressing privacy and security concerns in the development of datasets is emphasized, regarding data sharing and dataset creation.
arXiv Detail & Related papers (2024-04-22T09:36:17Z) - D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation [6.890077875318333]
Driver to Evaluation dataset (D2E) is an autonomous decision-making dataset.
It contains data on driver states, vehicle states, environmental situations, and evaluation scores from human reviewers.
D2E contains over 1100 segments of interactive driving case data covering from human driver factor to evaluation results.
arXiv Detail & Related papers (2024-04-12T21:29:18Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
arXiv Detail & Related papers (2024-03-24T19:32:39Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
This review systematically assesses over seventy open-source autonomous driving datasets.
It offers insights into various aspects, such as the principles underlying the creation of high-quality datasets.
It also delves into the scientific and technical challenges that warrant resolution.
arXiv Detail & Related papers (2023-12-06T10:46:53Z) - Occlusion-Aware 2D and 3D Centerline Detection for Urban Driving via
Automatic Label Generation [4.921246328739616]
This research work seeks to explore and identify strategies that can determine road topology information in 2D and 3D under highly dynamic urban driving scenarios.
To facilitate this exploration, we introduce a substantial dataset comprising nearly one million automatically labeled data frames.
arXiv Detail & Related papers (2023-11-03T17:20:34Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
Decision-making is one of the critical modules toward high-level automated driving.
Data-driven decision-making approaches have aroused more and more focus.
This study compares the state-of-the-art datasets of vehicle, environment, and driver related data.
arXiv Detail & Related papers (2023-06-29T08:42:18Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Perception Datasets for Anomaly Detection in Autonomous Driving: A
Survey [4.731404257629232]
Multiple perception datasets have been created for the evaluation of anomaly detection methods.
This survey provides a structured and, to the best of our knowledge, complete overview and comparison of perception datasets for anomaly detection in autonomous driving.
arXiv Detail & Related papers (2023-02-06T14:07:13Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
SHIFT is the largest multi-task synthetic dataset for autonomous driving.
It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density.
Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift.
arXiv Detail & Related papers (2022-06-16T17:59:52Z) - Grounded Situation Recognition [56.18102368133022]
We introduce Grounded Situation Recognition (GSR), a task that requires producing structured semantic summaries of images.
GSR presents important technical challenges: identifying semantic saliency, categorizing and localizing a large and diverse set of entities.
We show initial findings on three exciting future directions enabled by our models: conditional querying, visual chaining, and grounded semantic aware image retrieval.
arXiv Detail & Related papers (2020-03-26T17:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.