論文の概要: Advancements in Tactile Hand Gesture Recognition for Enhanced Human-Machine Interaction
- arxiv url: http://arxiv.org/abs/2405.17038v1
- Date: Mon, 27 May 2024 10:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:52:11.703589
- Title: Advancements in Tactile Hand Gesture Recognition for Enhanced Human-Machine Interaction
- Title(参考訳): 触覚ハンドジェスチャ認識の進歩 : 人間と機械の相互作用の強化
- Authors: Chiara Fumelli, Anirvan Dutta, Mohsen Kaboli,
- Abstract要約: 本研究は,直感的物理的ヒューマン・マシーンインタラクション(HRI/HVI)の強化への関心が高まっている。
導電性繊維で構築した大面積触覚触覚インタフェース(タッチインターフェース)に対して,手動作認識のアプローチを総合的に評価した。
- 参考スコア(独自算出の注目度): 1.6385815610837167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the growing interest in enhancing intuitive physical Human-Machine Interaction (HRI/HVI), this study aims to propose a robust tactile hand gesture recognition system. We performed a comprehensive evaluation of different hand gesture recognition approaches for a large area tactile sensing interface (touch interface) constructed from conductive textiles. Our evaluation encompassed traditional feature engineering methods, as well as contemporary deep learning techniques capable of real-time interpretation of a range of hand gestures, accommodating variations in hand sizes, movement velocities, applied pressure levels, and interaction points. Our extensive analysis of the various methods makes a significant contribution to tactile-based gesture recognition in the field of human-machine interaction.
- Abstract(参考訳): 本研究は,直感的物理的ヒューマン・マシーンインタラクション(HRI/HVI)の強化への関心が高まっている。
導電性繊維で構築した大面積触覚触覚インタフェース(タッチインターフェース)に対して,手動作認識のアプローチを総合的に評価した。
本評価では,手の大きさ,移動速度,加圧レベル,相互作用点などをリアルタイムに解釈できる,従来の特徴工学的手法や,現代の深層学習技術についても検討した。
本研究は, 触覚に基づくジェスチャー認識において, ヒトと機械の相互作用の分野で重要な役割を担っている。
関連論文リスト
- Multimodal Visual-Tactile Representation Learning through
Self-Supervised Contrastive Pre-Training [0.850206009406913]
MViTacは、コントラスト学習を利用して視覚と触覚を自己指導的に統合する新しい手法である。
両方の感覚入力を利用することで、MViTacは学習表現のモダリティ内およびモダリティ間損失を利用して、材料特性の分類を強化し、より適切な把握予測を行う。
論文 参考訳(メタデータ) (2024-01-22T15:11:57Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Recognizing Complex Gestures on Minimalistic Knitted Sensors: Toward
Real-World Interactive Systems [0.13048920509133805]
デジタル編みの容量型アクティブセンサーは、人間の介入はほとんどなく、大規模に製造できる。
本研究は,対話型ジェスチャー認識システムの基礎を構築することにより,そのようなセンサの能力を向上させる。
論文 参考訳(メタデータ) (2023-03-18T04:57:46Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Real-Time Gesture Recognition with Virtual Glove Markers [1.8352113484137629]
ジェスチャー認識アプリケーションのためのリアルタイムコンピュータビジョンに基づくヒューマンコンピュータインタラクションツールを提案する。
このシステムは、テレプレゼンスとリハビリテーションによるソーシャルインタラクションを含むリアルタイムアプリケーションに有効である。
論文 参考訳(メタデータ) (2022-07-06T14:56:08Z) - The Gesture Authoring Space: Authoring Customised Hand Gestures for
Grasping Virtual Objects in Immersive Virtual Environments [81.5101473684021]
本研究は、仮想オブジェクトを現実世界のようにつかむことができる、オブジェクト固有のグリップジェスチャーのためのハンドジェスチャーオーサリングツールを提案する。
提示されたソリューションは、ジェスチャー認識にテンプレートマッチングを使用し、カスタムのカスタマイズされた手の動きを設計および作成するために技術的な知識を必要としない。
本研究は,提案手法を用いて作成したジェスチャーが,ユーザによって他のユーザよりも自然な入力モダリティとして認識されていることを示した。
論文 参考訳(メタデータ) (2022-07-03T18:33:33Z) - Snapture -- A Novel Neural Architecture for Combined Static and Dynamic
Hand Gesture Recognition [19.320551882950706]
そこで本研究では,新しいハイブリットハンドジェスチャ認識システムを提案する。
我々のアーキテクチャは静的なジェスチャーと動的ジェスチャーの両方を学ぶことができる。
本研究は,ロボットとの非言語コミュニケーションのためのジェスチャー認識研究と機械学習応用の両方に貢献する。
論文 参考訳(メタデータ) (2022-05-28T11:12:38Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - 3D dynamic hand gestures recognition using the Leap Motion sensor and
convolutional neural networks [0.0]
本稿では,Leap Motionセンサーを用いて取得した非静的なジェスチャーの認識方法を提案する。
取得したジェスチャー情報をカラー画像に変換し、ジェスチャー中の手関節位置の変化を平面に投影する。
ジェスチャーの分類はDeep Convolutional Neural Network (CNN)を用いて行われる。
論文 参考訳(メタデータ) (2020-03-03T11:05:35Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。