Ensembling Diffusion Models via Adaptive Feature Aggregation
- URL: http://arxiv.org/abs/2405.17082v2
- Date: Mon, 24 Feb 2025 07:35:14 GMT
- Title: Ensembling Diffusion Models via Adaptive Feature Aggregation
- Authors: Cong Wang, Kuan Tian, Yonghang Guan, Fei Shen, Zhiwei Jiang, Qing Gu, Jun Zhang,
- Abstract summary: Leveraging multiple high-quality models to produce stronger generation ability is valuable, but has not been extensively studied.<n>Existing methods primarily adopt parameter merging strategies to produce a new static model.<n>We propose Adaptive Feature Aggregation (AFA), which dynamically adjusts the contributions of multiple models at the feature level according to various states.
- Score: 14.663257610094625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of the text-guided diffusion model has inspired the development and release of numerous powerful diffusion models within the open-source community. These models are typically fine-tuned on various expert datasets, showcasing diverse denoising capabilities. Leveraging multiple high-quality models to produce stronger generation ability is valuable, but has not been extensively studied. Existing methods primarily adopt parameter merging strategies to produce a new static model. However, they overlook the fact that the divergent denoising capabilities of the models may dynamically change across different states, such as when experiencing different prompts, initial noises, denoising steps, and spatial locations. In this paper, we propose a novel ensembling method, Adaptive Feature Aggregation (AFA), which dynamically adjusts the contributions of multiple models at the feature level according to various states (i.e., prompts, initial noises, denoising steps, and spatial locations), thereby keeping the advantages of multiple diffusion models, while suppressing their disadvantages. Specifically, we design a lightweight Spatial-Aware Block-Wise (SABW) feature aggregator that adaptive aggregates the block-wise intermediate features from multiple U-Net denoisers into a unified one. The core idea lies in dynamically producing an individual attention map for each model's features by comprehensively considering various states. It is worth noting that only SABW is trainable with about 50 million parameters, while other models are frozen. Both the quantitative and qualitative experiments demonstrate the effectiveness of our proposed Adaptive Feature Aggregation method.
Related papers
- Diffusion models for multivariate subsurface generation and efficient probabilistic inversion [0.0]
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks.<n>We introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling.<n>Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function.
arXiv Detail & Related papers (2025-07-21T17:10:16Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - DiffMoE: Dynamic Token Selection for Scalable Diffusion Transformers [86.5541501589166]
DiffMoE is a batch-level global token pool that enables experts to access global token distributions during training.
It achieves state-of-the-art performance among diffusion models on ImageNet benchmark.
The effectiveness of our approach extends beyond class-conditional generation to more challenging tasks such as text-to-image generation.
arXiv Detail & Related papers (2025-03-18T17:57:07Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.
To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.
Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.
Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.
Our experiments show that the proposed approach significantly improves the average aesthetics scores text-to-image generation.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Discrete Copula Diffusion [44.96934660818884]
We identify a fundamental limitation that prevents discrete diffusion models from achieving strong performance with fewer steps.
We introduce a general approach to supplement the missing dependency information by incorporating another deep generative model, termed the copula model.
Our method does not require fine-tuning either the diffusion model or the copula model, yet it enables high-quality sample generation with significantly fewer denoising steps.
arXiv Detail & Related papers (2024-10-02T18:51:38Z) - Aggregation of Multi Diffusion Models for Enhancing Learned Representations [4.126721111013567]
This paper introduces a novel algorithm, Aggregation of Multi Diffusion Models (AMDM)
AMDM synthesizes features from multiple diffusion models into a specified model, enhancing its learned representations to activate specific features for fine-grained control.
Experimental results demonstrate that AMDM significantly improves fine-grained control without additional training or inference time.
arXiv Detail & Related papers (2024-10-02T06:16:06Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Diffusion-Generative Multi-Fidelity Learning for Physical Simulation [24.723536390322582]
We develop a diffusion-generative multi-fidelity learning method based on differential equations (SDE), where the generation is a continuous denoising process.
By conditioning on additional inputs (temporal or spacial variables), our model can efficiently learn and predict multi-dimensional solution arrays.
arXiv Detail & Related papers (2023-11-09T18:59:05Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - Unite and Conquer: Plug & Play Multi-Modal Synthesis using Diffusion
Models [54.1843419649895]
We propose a solution based on denoising diffusion probabilistic models (DDPMs)
Our motivation for choosing diffusion models over other generative models comes from the flexible internal structure of diffusion models.
Our method can unite multiple diffusion models trained on multiple sub-tasks and conquer the combined task.
arXiv Detail & Related papers (2022-12-01T18:59:55Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERT is a new generative masked language model based on discrete diffusion models.
We propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step.
Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improvement over existing diffusion models for text.
arXiv Detail & Related papers (2022-11-28T03:25:49Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Balanced Multimodal Learning via On-the-fly Gradient Modulation [10.5602074277814]
Multimodal learning helps to comprehensively understand the world, by integrating different senses.
We propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective.
arXiv Detail & Related papers (2022-03-29T08:26:38Z) - Tackling the Generative Learning Trilemma with Denoising Diffusion GANs [20.969702008187838]
Deep generative models often struggle with simultaneously addressing high sample quality, mode coverage, and fast sampling.
We call the challenge the generative learning trilemma, as the existing models often trade some of them for others.
We introduce denoising diffusion generative adversarial networks (denoising diffusion GANs) that model each denoising step using a multimodal conditional GAN.
arXiv Detail & Related papers (2021-12-15T00:09:38Z) - Learning Integrodifferential Models for Image Denoising [14.404339094377319]
We introduce an integrodifferential extension of the edge-enhancing anisotropic diffusion model for image denoising.
By accumulating weighted structural information on multiple scales, our model is the first to create anisotropy through multiscale integration.
arXiv Detail & Related papers (2020-10-21T10:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.