論文の概要: CoSLight: Co-optimizing Collaborator Selection and Decision-making to Enhance Traffic Signal Control
- arxiv url: http://arxiv.org/abs/2405.17152v2
- Date: Tue, 18 Jun 2024 04:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 01:25:27.923553
- Title: CoSLight: Co-optimizing Collaborator Selection and Decision-making to Enhance Traffic Signal Control
- Title(参考訳): CoSLight: 交通信号制御を支援する共同作業者選択と意思決定
- Authors: Jingqing Ruan, Ziyue Li, Hua Wei, Haoyuan Jiang, Jiaming Lu, Xuantang Xiong, Hangyu Mao, Rui Zhao,
- Abstract要約: 既存の作業は主に近隣の交差点を協力者として選択している。
我々は,共同作業者選択を学習すべき第2の方針として分離することを提案する。
具体的には、リアルタイムで選択ポリシーは、フェーズレベルと交差点レベルの特徴に応じて、最適なチームメイトを適応的に選択する。
- 参考スコア(独自算出の注目度): 14.134128926121711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective multi-intersection collaboration is pivotal for reinforcement-learning-based traffic signal control to alleviate congestion. Existing work mainly chooses neighboring intersections as collaborators. However, quite an amount of congestion, even some wide-range congestion, is caused by non-neighbors failing to collaborate. To address these issues, we propose to separate the collaborator selection as a second policy to be learned, concurrently being updated with the original signal-controlling policy. Specifically, the selection policy in real-time adaptively selects the best teammates according to phase- and intersection-level features. Empirical results on both synthetic and real-world datasets provide robust validation for the superiority of our approach, offering significant improvements over existing state-of-the-art methods. The code is available at https://github.com/bonaldli/CoSLight.
- Abstract(参考訳): 強化学習に基づく交通信号制御において,効果的な多区間協調が重要である。
既存の作業は主に近隣の交差点を協力者として選択している。
しかし、非常に多くの混雑、あるいはある程度の広範囲の混雑は、非隣人が協力し合わなかったために引き起こされる。
これらの問題に対処するために、我々は、協力者選択を学習すべき第2のポリシーとして分離し、元の信号制御ポリシーを同時に更新することを提案する。
具体的には、リアルタイムで選択ポリシーは、フェーズレベルと交差点レベルの特徴に応じて、最適なチームメイトを適応的に選択する。
合成と実世界の両方のデータセットに対する実証的な結果は、我々のアプローチの優位性に対する堅牢な検証を提供し、既存の最先端手法よりも大幅に改善されている。
コードはhttps://github.com/bonaldli/CoSLightで入手できる。
関連論文リスト
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
第6世代(6G)ネットワークは、従来のRISの限界を克服するために、再構成可能なインテリジェントサーフェス(STAR-RIS)を同時に送信および反射する。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を示す。
屋内通信に複数のアクセスポイント(AP)とSTAR-RISを利用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Cooperative Reinforcement Learning on Traffic Signal Control [3.759936323189418]
交通信号の制御は、道路交差点での車両の移動を調整することで、全体の走行時間を最小化することを目的とした、現実的な課題である。
既存の信号制御システムは、過度に単純化された情報とルールベースの方法に大きく依存している。
本稿では,交通信号制御最適化のための複数の報酬項をより正確に推定するために,年齢遅延重み付き協調型多目的アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-23T13:25:15Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - A Multi-intersection Vehicular Cooperative Control based on
End-Edge-Cloud Computing [25.05518638792962]
複数の交差点を有する広いエリアにおける車両間の協調を可能にするために,多断面車両協調制御(MiVeCC)を提案する。
まず、車両間のエッジクラウド垂直協調と水平協調を容易にするために、車両用エンドエッジクラウドコンピューティングフレームワークを提案する。
高密度トラフィックに対処するため, 車両選択法を提案し, 性能劣化を伴わずに, 状態空間を小さくし, アルゴリズムの収束を加速する。
論文 参考訳(メタデータ) (2020-12-01T14:15:14Z) - Non-Stationary Off-Policy Optimization [50.41335279896062]
本研究では,時間的空間的帯域幅の非政治最適化の新たな課題について検討する。
オフライン学習フェーズでは、ログ化されたデータをカテゴリの潜在状態に分割し、各状態に対してほぼ最適のサブポリシーを学ぶ。
オンラインデプロイメントの段階では、学習したサブ政治をそのパフォーマンスに基づいて順応的に切り替える。
論文 参考訳(メタデータ) (2020-06-15T09:16:09Z) - Learning Scalable Multi-Agent Coordination by Spatial Differentiation
for Traffic Signal Control [8.380832628205372]
交通信号制御のためのディープ強化学習法に基づくマルチエージェント協調フレームワークを設計する。
具体的には、リプレイバッファ内の時間空間情報を用いて各アクションの報酬を補正する調整のための空間差分法を提案する。
論文 参考訳(メタデータ) (2020-02-27T02:16:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。