DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
- URL: http://arxiv.org/abs/2405.17176v1
- Date: Mon, 27 May 2024 13:55:08 GMT
- Title: DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
- Authors: Yuqing Zhang, Yuan Liu, Zhiyu Xie, Lei Yang, Zhongyuan Liu, Mengzhou Yang, Runze Zhang, Qilong Kou, Cheng Lin, Wenping Wang, Xiaogang Jin,
- Abstract summary: We introduce DreamMat, an innovative approach to generate high-quality PBR materials from text descriptions.
We first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition.
By applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo.
- Score: 43.90578254200415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 2D diffusion model, which often contains unwanted baked-in shading effects and results in unrealistic rendering effects in the downstream applications. Generating Physically Based Rendering (PBR) materials instead of just RGB textures would be a promising solution. However, directly distilling the PBR material parameters from 2D diffusion models still suffers from incorrect material decomposition, such as baked-in shading effects in albedo. We introduce DreamMat, an innovative approach to resolve the aforementioned problem, to generate high-quality PBR materials from text descriptions. We find out that the main reason for the incorrect material distillation is that large-scale 2D diffusion models are only trained to generate final shading colors, resulting in insufficient constraints on material decomposition during distillation. To tackle this problem, we first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition. Then, by applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo. Extensive experiments demonstrate that the materials produced through our methods exhibit greater visual appeal to users and achieve significantly superior rendering quality compared to baseline methods, which are preferable for downstream tasks such as game and film production.
Related papers
- DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models [83.28670336340608]
We introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering.
Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
arXiv Detail & Related papers (2025-01-30T18:59:11Z) - MCMat: Multiview-Consistent and Physically Accurate PBR Material Generation [30.69364954074992]
UNet-based diffusion models to generate multi-view physically rendering PBR maps but struggle with multi-view inconsistency, some 3D methods directly generate UV maps, issues due to the 3D data.
In the stage, we propose to generate PBR materials, where both the specially designed Transformer DiDi) model to generate PBR materials feature reference views.
arXiv Detail & Related papers (2024-12-18T18:45:35Z) - Neural LightRig: Unlocking Accurate Object Normal and Material Estimation with Multi-Light Diffusion [45.81230812844384]
We present a novel framework that boosts intrinsic estimation by leveraging auxiliary multi-lighting conditions from 2D diffusion priors.
We train a large G-buffer model with a U-Net backbone to accurately predict surface normals and materials.
arXiv Detail & Related papers (2024-12-12T18:58:09Z) - Boosting 3D Object Generation through PBR Materials [32.732511476490316]
We propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials.
For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values.
In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment.
arXiv Detail & Related papers (2024-11-25T04:20:52Z) - MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors [67.74705555889336]
We introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties.
We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances.
We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions.
arXiv Detail & Related papers (2024-09-23T17:59:06Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation [101.2317840114147]
We present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors.
Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model.
arXiv Detail & Related papers (2023-12-14T09:07:37Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.