Boosting 3D Object Generation through PBR Materials
- URL: http://arxiv.org/abs/2411.16080v1
- Date: Mon, 25 Nov 2024 04:20:52 GMT
- Title: Boosting 3D Object Generation through PBR Materials
- Authors: Yitong Wang, Xudong Xu, Li Ma, Haoran Wang, Bo Dai,
- Abstract summary: We propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials.
For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values.
In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment.
- Score: 32.732511476490316
- License:
- Abstract: Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
Related papers
- Edify 3D: Scalable High-Quality 3D Asset Generation [53.86838858460809]
Edify 3D is an advanced solution designed for high-quality 3D asset generation.
Our method can generate high-quality 3D assets with detailed geometry, clean shape topologies, high-resolution textures, and materials within 2 minutes of runtime.
arXiv Detail & Related papers (2024-11-11T17:07:43Z) - RGM: Reconstructing High-fidelity 3D Car Assets with Relightable 3D-GS Generative Model from a Single Image [30.049602796278133]
High-quality 3D car assets are essential for various applications, including video games, autonomous driving, and virtual reality.
Current 3D generation methods utilizing NeRF or 3D-GS as representations for 3D objects, generate a Lambertian object under fixed lighting.
We propose a novel relightable 3D object generative framework that automates the creation of 3D car assets from a single input image.
arXiv Detail & Related papers (2024-10-10T17:54:03Z) - 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion [86.25111098482537]
We introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome limitations of existing methods.
3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format.
On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion.
We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-
arXiv Detail & Related papers (2024-09-19T17:59:06Z) - CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner [34.78919665494048]
CraftsMan can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces.
Our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods.
arXiv Detail & Related papers (2024-05-23T18:30:12Z) - UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures [80.047065473698]
We propose a novel 3D avatar generation approach termed UltrAvatar with enhanced fidelity of geometry, and superior quality of physically based rendering (PBR) textures without unwanted lighting.
We demonstrate the effectiveness and robustness of the proposed method, outperforming the state-of-the-art methods by a large margin in the experiments.
arXiv Detail & Related papers (2024-01-20T01:55:17Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators.
Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields.
We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools.
Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, and orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools.
arXiv Detail & Related papers (2023-09-15T16:34:51Z) - 3D Scene Creation and Rendering via Rough Meshes: A Lighting Transfer Avenue [49.62477229140788]
This paper studies how to flexibly integrate reconstructed 3D models into practical 3D modeling pipelines such as 3D scene creation and rendering.
We propose a lighting transfer network (LighTNet) to bridge NFR and PBR, such that they can benefit from each other.
arXiv Detail & Related papers (2022-11-27T13:31:00Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.