MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
- URL: http://arxiv.org/abs/2405.17191v3
- Date: Sun, 16 Feb 2025 15:49:00 GMT
- Title: MCGAN: Enhancing GAN Training with Regression-Based Generator Loss
- Authors: Baoren Xiao, Hao Ni, Weixin Yang,
- Abstract summary: Generative adversarial networks (GANs) have emerged as a powerful tool for generating high-fidelity data.
Main bottleneck of existing approaches is the lack of supervision on the generator training.
We propose an algorithm called Monte Carlo GAN (MCGAN)
- Score: 5.7645234295847345
- License:
- Abstract: Generative adversarial networks (GANs) have emerged as a powerful tool for generating high-fidelity data. However, the main bottleneck of existing approaches is the lack of supervision on the generator training, which often results in undamped oscillation and unsatisfactory performance. To address this issue, we propose an algorithm called Monte Carlo GAN (MCGAN). This approach, utilizing an innovative generative loss function, termly the regression loss, reformulates the generator training as a regression task and enables the generator training by minimizing the mean squared error between the discriminator's output of real data and the expected discriminator of fake data. We demonstrate the desirable analytic properties of the regression loss, including discriminability and optimality, and show that our method requires a weaker condition on the discriminator for effective generator training. These properties justify the strength of this approach to improve the training stability while retaining the optimality of GAN by leveraging strong supervision of the regression loss. Extensive experiments on diverse datasets, including image data (CIFAR-10/100, FFHQ256, ImageNet, and LSUN Bedroom), time series data (VAR and stock data) and video data, are conducted to demonstrate the flexibility and effectiveness of our proposed MCGAN. Numerical results show that the proposed MCGAN is versatile in enhancing a variety of backbone GAN models and achieves consistent and significant improvement in terms of quality, accuracy, training stability, and learned latent space.
Related papers
- Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
A generative adversarial network (GAN) has been a representative backbone model in generative artificial intelligence (AI)
This work analyzes the training instability and inefficiency in the presence of mode collapse by linking it to multimodality in the target distribution.
With our newly developed GAN objective function, the generator can learn all the tempered distributions simultaneously.
arXiv Detail & Related papers (2024-11-18T18:01:13Z) - Damage GAN: A Generative Model for Imbalanced Data [1.027461951217988]
This study explores the application of Generative Adversarial Networks (GANs) within the context of imbalanced datasets.
We introduce a novel network architecture known as Damage GAN, building upon the ContraD GAN framework which seamlessly integrates GANs and contrastive learning.
arXiv Detail & Related papers (2023-12-08T06:36:33Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
We propose a diffusion-style data augmentation scheme for GAN-based image super-resolution (SR) methods, known as DifAugGAN.
It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training.
Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance.
arXiv Detail & Related papers (2023-11-30T12:37:53Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - An Empirical Study on GANs with Margin Cosine Loss and Relativistic
Discriminator [4.899818550820575]
We introduce a new loss function, namely Relativistic Margin Cosine Loss (RMCosGAN)
We compare RMCosGAN performance with existing loss functions based on two metrics: Frechet inception distance and inception score.
The experimental results show that RMCosGAN outperforms the existing ones and significantly improves the quality of images generated.
arXiv Detail & Related papers (2021-10-21T17:25:47Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Improving GAN Training with Probability Ratio Clipping and Sample
Reweighting [145.5106274085799]
generative adversarial networks (GANs) often suffer from inferior performance due to unstable training.
We propose a new variational GAN training framework which enjoys superior training stability.
By plugging the training approach in diverse state-of-the-art GAN architectures, we obtain significantly improved performance over a range of tasks.
arXiv Detail & Related papers (2020-06-12T01:39:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.