All-day Depth Completion
- URL: http://arxiv.org/abs/2405.17315v1
- Date: Mon, 27 May 2024 16:16:53 GMT
- Title: All-day Depth Completion
- Authors: Vadim Ezhov, Hyoungseob Park, Zhaoyang Zhang, Rishi Upadhyay, Howard Zhang, Chethan Chinder Chandrappa, Achuta Kadambi, Yunhao Ba, Julie Dorsey, Alex Wong,
- Abstract summary: We propose a method for depth estimation under different illumination conditions, i.e., day and night time.
We take as input an additional synchronized sparse point cloud projected onto the image plane as a sparse depth map, along with a camera image.
SpaDe can be used in a plug-and-play fashion, which allows for 25% improvement when augmented onto existing methods to preprocess sparse depth.
- Score: 20.98941382541901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for depth estimation under different illumination conditions, i.e., day and night time. As photometry is uninformative in regions under low-illumination, we tackle the problem through a multi-sensor fusion approach, where we take as input an additional synchronized sparse point cloud (i.e., from a LiDAR) projected onto the image plane as a sparse depth map, along with a camera image. The crux of our method lies in the use of the abundantly available synthetic data to first approximate the 3D scene structure by learning a mapping from sparse to (coarse) dense depth maps along with their predictive uncertainty - we term this, SpaDe. In poorly illuminated regions where photometric intensities do not afford the inference of local shape, the coarse approximation of scene depth serves as a prior; the uncertainty map is then used with the image to guide refinement through an uncertainty-driven residual learning (URL) scheme. The resulting depth completion network leverages complementary strengths from both modalities - depth is sparse but insensitive to illumination and in metric scale, and image is dense but sensitive with scale ambiguity. SpaDe can be used in a plug-and-play fashion, which allows for 25% improvement when augmented onto existing methods to preprocess sparse depth. We demonstrate URL on the nuScenes dataset where we improve over all baselines by an average 11.65% in all-day scenarios, 11.23% when tested specifically for daytime, and 13.12% for nighttime scenes.
Related papers
- Temporal Lidar Depth Completion [0.08192907805418582]
We show how a state-of-the-art method PENet can be modified to benefit from recurrency.
Our algorithm achieves state-of-the-art results on the KITTI depth completion dataset.
arXiv Detail & Related papers (2024-06-17T08:25:31Z) - Understanding Depth Map Progressively: Adaptive Distance Interval
Separation for Monocular 3d Object Detection [38.96129204108353]
Several monocular 3D detection techniques rely on auxiliary depth maps from the depth estimation task.
We propose a framework named the Adaptive Distance Interval Separation Network (ADISN) that adopts a novel perspective on understanding depth maps.
arXiv Detail & Related papers (2023-06-19T13:32:53Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
We show how to use a combination of three techniques to allow the existing photometric losses to work for both day and nighttime images.
First, we introduce a per-pixel neural intensity transformation to compensate for the light changes that occur between successive frames.
Second, we predict a per-pixel residual flow map that we use to correct the reprojection correspondences induced by the estimated ego-motion and depth.
arXiv Detail & Related papers (2022-06-28T09:29:55Z) - Gated2Gated: Self-Supervised Depth Estimation from Gated Images [22.415893281441928]
Gated cameras hold promise as an alternative to scanning LiDAR sensors with high-resolution 3D depth.
We propose an entirely self-supervised depth estimation method that uses gated intensity profiles and temporal consistency as a training signal.
arXiv Detail & Related papers (2021-12-04T19:47:38Z) - A Real-Time Online Learning Framework for Joint 3D Reconstruction and
Semantic Segmentation of Indoor Scenes [87.74952229507096]
This paper presents a real-time online vision framework to jointly recover an indoor scene's 3D structure and semantic label.
Given noisy depth maps, a camera trajectory, and 2D semantic labels at train time, the proposed neural network learns to fuse the depth over frames with suitable semantic labels in the scene space.
arXiv Detail & Related papers (2021-08-11T14:29:01Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z) - Fast and Accurate Optical Flow based Depth Map Estimation from Light
Fields [22.116100469958436]
We propose a depth estimation method from light fields based on existing optical flow estimation methods.
The different disparity map estimates that we obtain are very consistent, which allows a fast and simple aggregation step to create a single disparity map.
Since the disparity map estimates are consistent, we can also create a depth map from each disparity estimate, and then aggregate the different depth maps in the 3D space to create a single dense depth map.
arXiv Detail & Related papers (2020-08-11T12:53:31Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.