論文の概要: Assessing the significance of longitudinal data in Alzheimer's Disease forecasting
- arxiv url: http://arxiv.org/abs/2405.17352v1
- Date: Mon, 27 May 2024 16:55:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:23:58.819039
- Title: Assessing the significance of longitudinal data in Alzheimer's Disease forecasting
- Title(参考訳): アルツハイマー病予測における経時的データの重要性の評価
- Authors: Batuhan K. Karaman, Mert R. Sabuncu,
- Abstract要約: 我々は、アルツハイマー病(AD)の進行を予測するための縦断的患者データの重要性を特徴付けるために、トランスフォーマーエンコーダモデルを用いている。
アルツハイマー病の縦断予測モデル (LongForMAD) は, 患者訪問の順序に埋め込まれた包括的時間的情報を活用する。
本研究は,ADの早期検出とモニタリングを促進するため,臨床環境における経時的データの導入を支援する。
- 参考スコア(独自算出の注目度): 7.72135261611709
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we employ a transformer encoder model to characterize the significance of longitudinal patient data for forecasting the progression of Alzheimer's Disease (AD). Our model, Longitudinal Forecasting Model for Alzheimer's Disease (LongForMAD), harnesses the comprehensive temporal information embedded in sequences of patient visits that incorporate multimodal data, providing a deeper understanding of disease progression than can be drawn from single-visit data alone. We present an empirical analysis across two patient groups-Cognitively Normal (CN) and Mild Cognitive Impairment (MCI)-over a span of five follow-up years. Our findings reveal that models incorporating more extended patient histories can outperform those relying solely on present information, suggesting a deeper historical context is critical in enhancing predictive accuracy for future AD progression. Our results support the incorporation of longitudinal data in clinical settings to enhance the early detection and monitoring of AD. Our code is available at \url{https://github.com/batuhankmkaraman/LongForMAD}.
- Abstract(参考訳): 本研究では,アルツハイマー病(AD)の進行を予測するための縦型患者データの重要性を特徴付けるために,トランスフォーマーエンコーダモデルを用いた。
アルツハイマー病の縦断的予測モデル(LongForMAD)は,多モーダルデータを含む患者訪問の順序に埋め込まれた総合的時間的情報を活用し,単一ビジットデータのみから得られる以上の病気進行の深い理解を提供する。
認知正常群 (CN) と軽度認知障害群 (MCI) の5年間にわたる経験的分析を行った。
以上の結果から,より拡張された患者履歴を取り入れたモデルでは,現在情報のみに依存しているモデルよりも優れており,今後のAD進行の予測精度を高める上で,より深い歴史的文脈が重要であることが示唆された。
本研究は,ADの早期検出とモニタリングを促進するため,臨床環境における経時的データの導入を支援する。
私たちのコードは \url{https://github.com/batuhankmkaraman/LongForMAD} で利用可能です。
関連論文リスト
- Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
本研究は,慢性腎臓病(CKD)から末期腎疾患(ESRD)への進行を予測するために,高度な機械学習とディープラーニング技術を組み合わせた管理クレームデータを活用する可能性を検討する。
我々は、ランダムフォレストやXGBoostといった従来の機械学習手法とLong Short-Term Memory(LSTM)ネットワークのようなディープラーニングアプローチを用いて、大手医療保険会社が提供した包括的10年間のデータセットを分析し、複数の観測窓の予測モデルを開発する。
以上の結果から,LSTMモデル,特に24ヶ月の観測窓を用いた場合,ESRD進行予測において優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-18T16:03:57Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
アルツハイマー病(英: Alzheimer's Disease、AD)は、個人間での進行率の多様性を特徴とする神経変性疾患である。
与えられたベースライン情報を用いてCThトラジェクトリを生成する条件付きスコアベース拡散モデルを提案する。
本モデルでは6~36ヶ月のCThに比べて95%間隔が狭いほぼゼロバイアスを有する。
論文 参考訳(メタデータ) (2024-03-11T17:26:18Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - TA-RNN: an Attention-based Time-aware Recurrent Neural Network Architecture for Electronic Health Records [0.0]
リカレントニューラルネットワーク(RNN)のような深層学習手法を用いて、ERHを分析して疾患の進行をモデル化し、診断を予測する。
本研究では,TA-RNN(Time-Aware RNN)とTA-RNN-Autoencoder(TA-RNN-AE)という,RNNに基づく2つの解釈可能なDLアーキテクチャを提案する。
本研究では,不規則な時間間隔の影響を軽減するため,訪問時間間の時間埋め込みを取り入れることを提案する。
論文 参考訳(メタデータ) (2024-01-26T07:34:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
本稿では、アルツハイマー病の予測に使用されるモデルの様々なカテゴリを、それぞれの学習手法で概説する。
それは、アルツハイマー病の進行を早期に予測し、検出する比較研究を確立している。
最後に,ロバストかつ高精度な検出モデルを提案する。
論文 参考訳(メタデータ) (2021-10-10T11:44:16Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
アルツハイマー病(Alzheimer's disease, AD)は認知症の主要な原因の一つであり、数年間の進行が遅いことが特徴である。
本稿では,MRIバイオマーカーの表現型測定と臨床状態の軌跡を予測できる新しい計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T08:08:00Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。