論文の概要: Transformer Model for Alzheimer's Disease Progression Prediction Using Longitudinal Visit Sequences
- arxiv url: http://arxiv.org/abs/2507.03899v1
- Date: Sat, 05 Jul 2025 04:35:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.927204
- Title: Transformer Model for Alzheimer's Disease Progression Prediction Using Longitudinal Visit Sequences
- Title(参考訳): 経時的訪問シーケンスを用いたアルツハイマー病進行予測のためのトランスフォーマーモデル
- Authors: Mahdi Moghaddami, Clayton Schubring, Mohammad-Reza Siadat,
- Abstract要約: アルツハイマー病(英: Alzheimer's disease、AD)は、世界中の何千万人もの人に影響を及ぼす治療法がない神経変性疾患である。
本稿では,対象者の来訪履歴から抽出した一連の訪問の特徴を用いて,次の臨床訪問におけるAD進行を予測するためのトランスフォーマーモデルを提案する。
- 参考スコア(独自算出の注目度): 0.032771631221674334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder with no known cure that affects tens of millions of people worldwide. Early detection of AD is critical for timely intervention to halt or slow the progression of the disease. In this study, we propose a Transformer model for predicting the stage of AD progression at a subject's next clinical visit using features from a sequence of visits extracted from the subject's visit history. We also rigorously compare our model to recurrent neural networks (RNNs) such as long short-term memory (LSTM), gated recurrent unit (GRU), and minimalRNN and assess their performances based on factors such as the length of prior visits and data imbalance. We test the importance of different feature categories and visit history, as well as compare the model to a newer Transformer-based model optimized for time series. Our model demonstrates strong predictive performance despite missing visits and missing features in available visits, particularly in identifying converter subjects -- individuals transitioning to more severe disease stages -- an area that has posed significant challenges in longitudinal prediction. The results highlight the model's potential in enhancing early diagnosis and patient outcomes.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer's disease、AD)は、世界中の何千万人もの人に影響を及ぼす治療法がない神経変性疾患である。
ADの早期検出は、病気の進行を停止または遅らせるための時間的介入にとって重要である。
本研究では,対象者の訪問履歴から抽出した一連の訪問の特徴を用いて,次の臨床訪問におけるAD進行を予測するためのトランスフォーマーモデルを提案する。
また,Long Short-term memory(LSTM), gated Recurrent Unit(GRU), minimalRNNなどのリカレントニューラルネットワーク(RNN)と比較し,先行訪問の長さやデータの不均衡といった要因に基づいて,その性能を評価する。
時系列に最適化された新しいTransformerベースのモデルと比較し、異なる特徴カテゴリと訪問履歴の重要性を検証した。
我々のモデルは、訪問の欠如や訪問の欠如、特にコンバータの被験者(より重篤な疾患の段階に移行する個人)の特定に欠如しているにもかかわらず、強い予測性能を示しており、この領域は縦断的な予測において重大な課題を提起している。
その結果,早期診断と患者予後の向上におけるモデルの可能性が浮き彫りになった。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Assessing the significance of longitudinal data in Alzheimer's Disease forecasting [7.72135261611709]
我々は、アルツハイマー病(AD)の進行を予測するための縦断的患者データの重要性を特徴付けるために、トランスフォーマーエンコーダモデルを用いている。
アルツハイマー病の縦断予測モデル (LongForMAD) は, 患者訪問の順序に埋め込まれた包括的時間的情報を活用する。
本研究は,ADの早期検出とモニタリングを促進するため,臨床環境における経時的データの導入を支援する。
論文 参考訳(メタデータ) (2024-05-27T16:55:48Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
アルツハイマー病(英: Alzheimer's Disease、AD)は、個人間での進行率の多様性を特徴とする神経変性疾患である。
与えられたベースライン情報を用いてCThトラジェクトリを生成する条件付きスコアベース拡散モデルを提案する。
本モデルでは6~36ヶ月のCThに比べて95%間隔が狭いほぼゼロバイアスを有する。
論文 参考訳(メタデータ) (2024-03-11T17:26:18Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Benchmarking Continuous Time Models for Predicting Multiple Sclerosis
Progression [46.394865849252696]
多発性硬化症(英: multiple sclerosis)は、脳と脊髄に影響を及ぼす疾患であり、重度の障害を引き起こす可能性があり、既知の治療法がない。
最近の論文では, 成績評価と人口統計データを用いて, 疾患の進行を効果的に予測できることが示されている。
公開されている多発性硬化症データセットを用いて、4つの連続時間モデルをベンチマークする。
最高の継続的モデルは、しばしば最高のベンチマークされた個別の時間モデルより優れていることが分かりました。
論文 参考訳(メタデータ) (2023-02-15T18:45:32Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
本稿では、アルツハイマー病の予測に使用されるモデルの様々なカテゴリを、それぞれの学習手法で概説する。
それは、アルツハイマー病の進行を早期に予測し、検出する比較研究を確立している。
最後に,ロバストかつ高精度な検出モデルを提案する。
論文 参考訳(メタデータ) (2021-10-10T11:44:16Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Learning transition times in event sequences: the Event-Based Hidden
Markov Model of disease progression [4.12857285066818]
我々は、イベントベースと隠れマルコフモデリングのアイデアを結びつけて、疾患進行の新しい生成モデルを作成する。
我々のモデルは、限られたデータセットから最も可能性の高いグループレベルのシーケンスとイベントのタイミングを推測することができる。
我々は,アルツハイマー病神経画像イニシアチブの臨床的,画像的,バイオ流体的データを用いて,我々のモデルの有効性と有用性を実証した。
論文 参考訳(メタデータ) (2020-11-02T15:13:03Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
アルツハイマー病(Alzheimer's disease, AD)は認知症の主要な原因の一つであり、数年間の進行が遅いことが特徴である。
本稿では,MRIバイオマーカーの表現型測定と臨床状態の軌跡を予測できる新しい計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T08:08:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。