論文の概要: When Large Language Models Meet Optical Networks: Paving the Way for Automation
- arxiv url: http://arxiv.org/abs/2405.17441v2
- Date: Tue, 25 Jun 2024 03:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:49:31.128790
- Title: When Large Language Models Meet Optical Networks: Paving the Way for Automation
- Title(参考訳): 大規模言語モデルと光ネットワーク:自動化への道を開く
- Authors: Danshi Wang, Yidi Wang, Xiaotian Jiang, Yao Zhang, Yue Pang, Min Zhang,
- Abstract要約: 物理層をインテリジェントに制御し,アプリケーション層との相互作用を効果的に行うことを目的として,LLMを利用した光ネットワークのフレームワークを提案する。
提案手法は,ネットワークアラーム解析とネットワーク性能最適化の2つの典型的なタスクで検証される。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
- 参考スコア(独自算出の注目度): 17.4503217818141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the advent of GPT, large language models (LLMs) have brought about revolutionary advancements in all walks of life. As a superior natural language processing (NLP) technology, LLMs have consistently achieved state-of-the-art performance on numerous areas. However, LLMs are considered to be general-purpose models for NLP tasks, which may encounter challenges when applied to complex tasks in specialized fields such as optical networks. In this study, we propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer through an LLM-driven agent (AI-Agent) deployed in the control layer. The AI-Agent can leverage external tools and extract domain knowledge from a comprehensive resource library specifically established for optical networks. This is achieved through user input and well-crafted prompts, enabling the generation of control instructions and result representations for autonomous operation and maintenance in optical networks. To improve LLM's capability in professional fields and stimulate its potential on complex tasks, the details of performing prompt engineering, establishing domain knowledge library, and implementing complex tasks are illustrated in this study. Moreover, the proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization. The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
- Abstract(参考訳): GPTの出現以来、大きな言語モデル(LLM)はあらゆる人生に革命的な進歩をもたらした。
優れた自然言語処理(NLP)技術として、LLMは様々な分野で最先端のパフォーマンスを継続的に達成してきた。
しかし、LPMはNLPタスクの汎用モデルと考えられており、光ネットワークのような特殊な分野の複雑なタスクに適用した場合、課題に直面する可能性がある。
本研究では, LLM駆動型エージェント(AI-Agent)を制御層に配置し, 物理層をインテリジェントに制御し, アプリケーション層との相互作用を効果的に行うことを目的とした, LLM駆動型光ネットワークのフレームワークを提案する。
AI-Agentは、外部ツールを活用して、光ネットワークに特化した包括的なリソースライブラリからドメイン知識を抽出することができる。
これは、ユーザ入力と巧妙なプロンプトによって実現され、光ネットワークにおける自律的な操作と保守のための制御命令と結果表現の生成を可能にする。
専門分野におけるLLMの能力向上と,その複雑なタスクに対する可能性向上のために,迅速なエンジニアリング,ドメイン知識ライブラリの確立,複雑なタスクの実装などの詳細について解説する。
さらに,ネットワークアラーム解析とネットワーク性能最適化という2つの典型的な課題に対して,提案手法を検証した。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
関連論文リスト
- Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
本稿では,大規模言語モデルによるコンピュータネットワークの理解に関する総合的研究を初めて行った。
我々は,プライベート(GPT4など)とオープンソース(Llama2)モデルを用いた複数のコンピュータネットワーク上でのフレームワークの評価を行った。
プライベートLLMは、中小のネットワークにおいて注目すべき結果を得る一方、複雑なネットワークトポロジの理解には課題が続く。
論文 参考訳(メタデータ) (2024-04-19T07:41:54Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために,大規模言語モデルを効率的に適応する最初のフレームワークであるNetLLMを提案する。
ネットワークへのLLM適応におけるNetLLMの有効性を実証し、適応されたLLMが最先端のアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
大規模言語モデル (LLM) と基礎モデルは6Gシステムのゲームチェンジャーとして最近注目されている。
本稿では,人工知能(AI)ネイティブネットワークの展開に適したユニバーサルファンデーションモデルを設計するための包括的ビジョンを提案する。
論文 参考訳(メタデータ) (2024-01-30T00:21:41Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution [20.186752447895994]
複雑なタスクを実行するためのIoTデバイス間で効果的なコラボレーションを可能にするAIエージェントフレームワークであるLLMindを提案する。
脳の機能的特殊化理論に触発されて、我々のフレームワークはLLMをドメイン固有のAIモジュールと統合し、その能力を高める。
論文 参考訳(メタデータ) (2023-12-14T14:57:58Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。