論文の概要: Semantic Routing for Enhanced Performance of LLM-Assisted Intent-Based 5G Core Network Management and Orchestration
- arxiv url: http://arxiv.org/abs/2404.15869v1
- Date: Wed, 24 Apr 2024 13:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:10:55.749357
- Title: Semantic Routing for Enhanced Performance of LLM-Assisted Intent-Based 5G Core Network Management and Orchestration
- Title(参考訳): LLM支援インテントベース5Gコアネットワーク管理とオーケストレーションのためのセマンティックルーティング
- Authors: Dimitrios Michael Manias, Ali Chouman, Abdallah Shami,
- Abstract要約: 大規模言語モデル(LLM)は人工知能(AI)アプリケーションで急速に普及している。
本稿では,5Gコアネットワークの意図に基づく管理とオーケストレーションにおける性能向上を目的としたセマンティックルーティングを提案する。
- 参考スコア(独自算出の注目度): 10.981422497762837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are rapidly emerging in Artificial Intelligence (AI) applications, especially in the fields of natural language processing and generative AI. Not limited to text generation applications, these models inherently possess the opportunity to leverage prompt engineering, where the inputs of such models can be appropriately structured to articulate a model's purpose explicitly. A prominent example of this is intent-based networking, an emerging approach for automating and maintaining network operations and management. This paper presents semantic routing to achieve enhanced performance in LLM-assisted intent-based management and orchestration of 5G core networks. This work establishes an end-to-end intent extraction framework and presents a diverse dataset of sample user intents accompanied by a thorough analysis of the effects of encoders and quantization on overall system performance. The results show that using a semantic router improves the accuracy and efficiency of the LLM deployment compared to stand-alone LLMs with prompting architectures.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AI)アプリケーション、特に自然言語処理と生成AIの分野で急速に普及している。
テキスト生成アプリケーションに限らず、これらのモデルにはプロンプトエンジニアリングを利用する機会があり、そのようなモデルの入力を適切に構造化して、モデルの目的を明確に表現することができる。
この顕著な例は、ネットワーク操作と管理の自動化とメンテナンスのための新しいアプローチであるインテントベースのネットワーキングである。
本稿では,LLMによる5Gコアネットワークのインテントベース管理とオーケストレーションにおけるセマンティックルーティングの実現について述べる。
本研究は,エンド・ツー・エンドの意図抽出フレームワークを構築し,エンコーダの効果を徹底的に分析し,システム全体の性能を定量化するとともに,サンプルユーザ意図の多様なデータセットを提示する。
その結果, セマンティックルータを用いることで, アーキテクチャを推し進めるスタンドアロンのLCMに比べて, LLM配置の精度と効率が向上することがわかった。
関連論文リスト
- WDMoE: Wireless Distributed Mixture of Experts for Large Language Models [68.45482959423323]
大規模言語モデル(LLM)は様々な自然言語処理タスクにおいて大きな成功を収めた。
本稿では,無線ネットワーク上での基地局(BS)およびモバイルデバイスにおけるエッジサーバ間のLLMの協調展開を実現するために,無線分散Mixture of Experts(WDMoE)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-11-11T02:48:00Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Glider: Global and Local Instruction-Driven Expert Router [83.785832410832]
モデルMoErging」手法は、保持タスクのパフォーマンスを犠牲にして、未確認タスクへの一般化を優先する。
マルチスケールルーティング機構を統合したGLIDER(Global and Local Instruction Driven Expert Router)を提案する。
GLIDERは、ホールドアウトタスクの強い一般化を維持しながら、ホールドイン性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-10-09T17:59:14Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
物理層をインテリジェントに制御し,アプリケーション層との相互作用を効果的に行うことを目的として,LLMを利用した光ネットワークのフレームワークを提案する。
提案手法は,ネットワークアラーム解析とネットワーク性能最適化の2つの典型的なタスクで検証される。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-14T10:46:33Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために低努力でLLMの強力な能力を活用するためのコヒーレントな設計を提供する最初のフレームワークであるNetLLMを紹介する。
具体的には、NetLLMはLLMにネットワーク上のマルチモーダルデータを効果的に処理し、タスク固有の回答を効率的に生成する権限を与える。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
最先端の手法は、大規模データセットの事前トレーニングによって、素晴らしいパフォーマンスを達成する。
本稿では,新しい視覚的セマンティックモジュールを導入することで,マルチモーダルアライメントのための効率的なフレームワークを提案する。
実験の結果、提案されたASH-Netsは競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-18T10:40:25Z) - Enhancing Network Management Using Code Generated by Large Language
Models [15.557254786007325]
本稿では,大規模言語モデル(LLM)を用いて自然言語クエリからタスク固有コードを生成することにより,自然言語ベースのネットワーク管理エクスペリエンスを促進する新しいアプローチを提案する。
この方法は、ネットワークオペレーターが生成されたコードを検査できるようにすることで、説明可能性、スケーラビリティ、プライバシの課題に取り組む。
ベンチマークアプリケーションを用いてプロトタイプシステムを設計,評価し,高い精度,コスト効率,さらなる拡張の可能性を示す。
論文 参考訳(メタデータ) (2023-08-11T17:49:15Z) - Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision] [4.553891255178496]
大規模言語モデル(LLM)は、広範囲のアプリケーションにまたがって素晴らしいパフォーマンスを示している。
本稿では,トランザクションストリーム処理(TSP)とLLM管理を統合する革命的フレームワークであるTStreamLLMを紹介する。
リアルタイムの患者モニタリングやインテリジェントなトラフィック管理といった実践的なユースケースを通じて、その可能性を示す。
論文 参考訳(メタデータ) (2023-07-17T04:01:02Z) - SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information [83.03179580646324]
本稿では,新たなディープニューラルネットワークアーキテクチャであるSideInfNetを提案する。
画像から学習した機能とユーザアノテーションから抽出したサイド情報を統合する。
提案手法を評価するために,提案したネットワークを3つのセマンティックセグメンテーションタスクに適用し,ベンチマークデータセットに対する広範な実験を行った。
論文 参考訳(メタデータ) (2020-02-07T06:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。