Generative AI for the Optimization of Next-Generation Wireless Networks: Basics, State-of-the-Art, and Open Challenges
- URL: http://arxiv.org/abs/2405.17454v1
- Date: Wed, 22 May 2024 14:56:25 GMT
- Title: Generative AI for the Optimization of Next-Generation Wireless Networks: Basics, State-of-the-Art, and Open Challenges
- Authors: Fahime Khoramnejad, Ekram Hossain,
- Abstract summary: Generative AI (GAI) emerges as a powerful tool due to its unique strengths.
GAI excels at learning from real-world network data, capturing its intricacies.
This paper surveys how GAI-based models unlock optimization opportunities in xG wireless networks.
- Score: 11.707122626823248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next-generation (xG) wireless networks, with their complex and dynamic nature, present significant challenges to using traditional optimization techniques. Generative AI (GAI) emerges as a powerful tool due to its unique strengths. Unlike traditional optimization techniques and other machine learning methods, GAI excels at learning from real-world network data, capturing its intricacies. This enables safe, offline exploration of various configurations and generation of diverse, unseen scenarios, empowering proactive, data-driven exploration and optimization for xG networks. Additionally, GAI's scalability makes it ideal for large-scale xG networks. This paper surveys how GAI-based models unlock optimization opportunities in xG wireless networks. We begin by providing a review of GAI models and some of the major communication paradigms of xG (e.g., 6G) wireless networks. We then delve into exploring how GAI can be used to improve resource allocation and enhance overall network performance. Additionally, we briefly review the networking requirements for supporting GAI applications in xG wireless networks. The paper further discusses the key challenges and future research directions in leveraging GAI for network optimization. Finally, a case study demonstrates the application of a diffusion-based GAI model for load balancing, carrier aggregation, and backhauling optimization in non-terrestrial networks, a core technology of xG networks. This case study serves as a practical example of how the combination of reinforcement learning and GAI can be implemented to address real-world network optimization problems.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey [11.701278783012171]
Generative AI (GAI) has emerged as a powerful AI paradigm.
This work presents a tutorial on the role of GAIs in mobile and wireless networking.
arXiv Detail & Related papers (2024-05-30T13:06:40Z) - Survey of Graph Neural Network for Internet of Things and NextG Networks [3.591122855617648]
Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights.
This survey provides a detailed description of GNN's terminologies, architecture, and the different types of GNNs.
Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems.
arXiv Detail & Related papers (2024-05-27T16:10:49Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - An NWDAF Approach to 5G Core Network Signaling Traffic: Analysis and
Characterization [3.5573601621032935]
This paper focuses on demonstrating a working system prototype of the 5G Core (5GC) network and the Network Data Analytics Function (NWDAF) used to bring the benefits of data-driven techniques to fruition.
Analyses of the network-generated data explore core intra-network interactions through unsupervised learning, clustering, and evaluate these results as insights for future opportunities and works.
arXiv Detail & Related papers (2022-09-21T15:21:59Z) - A Graph Attention Learning Approach to Antenna Tilt Optimization [1.8024332526232831]
6G will move mobile networks towards increasing levels of complexity.
To deal with this complexity, optimization of network parameters is key to ensure high performance and timely adaptivity to dynamic network environments.
We propose a Graph Attention Q-learning (GAQ) algorithm for tilt optimization.
arXiv Detail & Related papers (2021-12-27T15:20:53Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.