Distributed Continual Learning
- URL: http://arxiv.org/abs/2405.17466v1
- Date: Thu, 23 May 2024 21:24:26 GMT
- Title: Distributed Continual Learning
- Authors: Long Le, Marcel Hussing, Eric Eaton,
- Abstract summary: We introduce a mathematical framework capturing the essential aspects of distributed continual learning.
We identify three modes of information exchange: data instances, full model parameters, and modular (partial) model parameters.
Our findings reveal three key insights: sharing parameters is more efficient than sharing data as tasks become more complex.
- Score: 12.18012293738896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work studies the intersection of continual and federated learning, in which independent agents face unique tasks in their environments and incrementally develop and share knowledge. We introduce a mathematical framework capturing the essential aspects of distributed continual learning, including agent model and statistical heterogeneity, continual distribution shift, network topology, and communication constraints. Operating on the thesis that distributed continual learning enhances individual agent performance over single-agent learning, we identify three modes of information exchange: data instances, full model parameters, and modular (partial) model parameters. We develop algorithms for each sharing mode and conduct extensive empirical investigations across various datasets, topology structures, and communication limits. Our findings reveal three key insights: sharing parameters is more efficient than sharing data as tasks become more complex; modular parameter sharing yields the best performance while minimizing communication costs; and combining sharing modes can cumulatively improve performance.
Related papers
- Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
We study the role and interactions of multiple modalities in mitigating forgetting in deep neural networks (DNNs)
Our findings demonstrate that leveraging multiple views and complementary information from multiple modalities enables the model to learn more accurate and robust representations.
We propose a method for integrating and aligning the information from different modalities by utilizing the relational structural similarities between the data points in each modality.
arXiv Detail & Related papers (2024-05-04T22:02:58Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
We propose a novel algorithmic framework for data sharing and coordinated exploration for the purpose of learning more data-efficient and better performing policies under a concurrent reinforcement learning setting.
Our algorithm leverages a causal inference algorithm in the form of Additive Noise Model - Mixture Model (ANM-MM) in extracting model parameters governing individual differentials via independence enforcement.
We propose a new data sharing scheme based on a similarity measure of the extracted model parameters and demonstrate superior learning speeds on a set of autoregressive, pendulum and cart-pole swing-up tasks.
arXiv Detail & Related papers (2024-01-31T17:20:28Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Shared and Private Information Learning in Multimodal Sentiment Analysis with Deep Modal Alignment and Self-supervised Multi-Task Learning [8.868945335907867]
We propose a deep modal shared information learning module to capture the shared information between modalities.
We also use a label generation module based on a self-supervised learning strategy to capture the private information of the modalities.
Our approach outperforms current state-of-the-art methods on most of the metrics of the three public datasets.
arXiv Detail & Related papers (2023-05-15T09:24:48Z) - Exploring Interactions and Regulations in Collaborative Learning: An
Interdisciplinary Multimodal Dataset [40.193998859310156]
This paper introduces a new multimodal dataset with cognitive and emotional triggers to explore how regulations affect interactions during the collaborative process.
A learning task with intentional interventions is designed and assigned to high school students aged 15 years old.
Analysis of annotated emotions, body gestures, and their interactions indicates that our dataset with designed treatments could effectively examine moments of regulation in collaborative learning.
arXiv Detail & Related papers (2022-10-11T12:56:36Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.