論文の概要: Unveiling the Secrets: How Masking Strategies Shape Time Series Imputation
- arxiv url: http://arxiv.org/abs/2405.17508v2
- Date: Tue, 26 Nov 2024 13:26:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:32:36.258476
- Title: Unveiling the Secrets: How Masking Strategies Shape Time Series Imputation
- Title(参考訳): 謎を解き明かす:マスキング戦略がいかに時系列のインプットを形作るか
- Authors: Linglong Qian, Yiyuan Yang, Wenjie Du, Jun Wang, Zina Ibrahim,
- Abstract要約: 時系列計算はデータマイニングにおいて重要な課題であり、特に医療や環境モニタリングのような分野では、欠落したデータが分析結果を損なう可能性がある。
本研究では, 多様なマスキング戦略, 正規化タイミング, 欠落パターンが3つの多様なデータセットにおける11種類の最先端計算モデルの性能に及ぼす影響について検討した。
- 参考スコア(独自算出の注目度): 7.650009336768971
- License:
- Abstract: Time series imputation is a critical challenge in data mining, particularly in domains like healthcare and environmental monitoring, where missing data can compromise analytical outcomes. This study investigates the influence of diverse masking strategies, normalization timing, and missingness patterns on the performance of eleven state-of-the-art imputation models across three diverse datasets. Specifically, we evaluate the effects of pre-masking versus in-mini-batch masking, augmentation versus overlaying of artificial missingness, and pre-normalization versus post-normalization. Our findings reveal that masking strategies profoundly affect imputation accuracy, with dynamic masking providing robust augmentation benefits and overlay masking better simulating real-world missingness patterns. Sophisticated models, such as CSDI, exhibited sensitivity to preprocessing configurations, while simpler models like BRITS delivered consistent and efficient performance. We highlight the importance of aligning preprocessing pipelines and masking strategies with dataset characteristics to improve robustness under diverse conditions, including high missing rates. This study provides actionable insights for designing imputation pipelines and underscores the need for transparent and comprehensive experimental designs.
- Abstract(参考訳): 時系列計算はデータマイニングにおいて重要な課題であり、特に医療や環境モニタリングのような分野では、欠落したデータが分析結果を損なう可能性がある。
本研究では, 多様なマスキング戦略, 正規化タイミング, 欠落パターンが3つの多様なデータセットにおける11種類の最先端計算モデルの性能に及ぼす影響について検討した。
具体的には,プリマスキングとミニバッチマスキング,人工欠損のオーバレイ化とプレノーマライゼーションとポストノーマライゼーションの効果について検討した。
以上の結果から,マスキング戦略は計算精度に大きく影響し,動的マスキングは強靭な拡張効果をもたらし,オーバーレイマスキングは現実世界の欠陥パターンをシミュレートしやすくすることが明らかとなった。
CSDIのような洗練されたモデルは前処理の構成に敏感であり、BRITSのような単純なモデルは一貫性と効率的な性能をもたらした。
我々は、多種多様な条件下で堅牢性を改善するために、プレプロセスパイプラインとマスキング戦略をデータセット特性と整合させることの重要性を強調した。
本研究は, 透過的かつ包括的な実験設計の必要性を浮き彫りにして, インキュベーションパイプラインの設計に有効な知見を提供する。
関連論文リスト
- Evidential time-to-event prediction with calibrated uncertainty quantification [12.446406577462069]
Time-to-event分析は、臨床予後と治療勧告に関する洞察を提供する。
本稿では,時間とイベントの予測に特化して設計された明らかな回帰モデルを提案する。
我々のモデルは正確かつ信頼性の高い性能を提供し、最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-11-12T15:06:04Z) - Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts [2.309018557701645]
本稿では,予測不確実性推定が深層学習に基づく診断意思決定システムに堅牢性をもたらすか否かを評価する。
まず, モンテカルロの脱落, 深層アンサンブル, 肺腺癌分類の軽微な学習をスライド画像全体の一次疾患として, 予測不確実性を改善するための一般的な3つの方法について検討した。
論文 参考訳(メタデータ) (2024-08-15T21:49:43Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
アーキテクチャとフレームワークのバイアスがモデルのパフォーマンスにどのように影響するかを示します。
実験では、プリプロセッシングと実装の選択に基づいて、最大20%の性能変化を示す。
我々は,現在の深層計算法と医療要件の相違点を同定する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.25114005044208]
本稿では,不確実性の定量化を臨床治験結果の予測に取り入れることを提案する。
私たちの主な目標は、ニュアンスドの違いを識別するモデルの能力を強化することです。
我々は目的を達成するために選択的な分類手法を採用した。
論文 参考訳(メタデータ) (2024-01-07T13:48:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
本研究は,医療データの分類とリスク予測のための不確実性推定の理解を深めるものである。
医療などのデータ共有分野において、モデルの予測の不確実性を測定する能力は、意思決定支援ツールの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-04-13T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。