Approximately-symmetric neural networks for quantum spin liquids
- URL: http://arxiv.org/abs/2405.17541v1
- Date: Mon, 27 May 2024 18:00:00 GMT
- Title: Approximately-symmetric neural networks for quantum spin liquids
- Authors: Dominik S. Kufel, Jack Kemp, Simon M. Linsel, Chris R. Laumann, Norman Y. Yao,
- Abstract summary: We propose and analyze a family of approximately-symmetric neural networks for quantum spin liquid problems.
Our work paves the way toward investigating quantum spin liquid problems within interpretable neural network architectures.
- Score: 0.4369058206183195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and analyze a family of approximately-symmetric neural networks for quantum spin liquid problems. These tailored architectures are parameter-efficient, scalable, and significantly out-perform existing symmetry-unaware neural network architectures. Utilizing the mixed-field toric code model, we demonstrate that our approach is competitive with the state-of-the-art tensor network and quantum Monte Carlo methods. Moreover, at the largest system sizes (N=480), our method allows us to explore Hamiltonians with sign problems beyond the reach of both quantum Monte Carlo and finite-size matrix-product states. The network comprises an exactly symmetric block following a non-symmetric block, which we argue learns a transformation of the ground state analogous to quasiadiabatic continuation. Our work paves the way toward investigating quantum spin liquid problems within interpretable neural network architectures
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
arXiv Detail & Related papers (2023-07-07T16:47:02Z) - Quantum Transport in Open Spin Chains using Neural-Network Quantum
States [11.137438870686026]
We study the treatment of asymmetric open quantum systems with neural networks based on the restricted Boltzmann machine.
In particular, we are interested in the non-equilibrium steady state current in the boundary-driven (anisotropic) Heisenberg spin chain.
arXiv Detail & Related papers (2022-12-27T11:30:47Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Theory for Equivariant Quantum Neural Networks [0.0]
We present a theoretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant symmetry group.
Our framework can be readily applied to virtually all areas of quantum machine learning.
arXiv Detail & Related papers (2022-10-16T15:42:21Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Sampling asymmetric open quantum systems for artificial neural networks [77.34726150561087]
We present a hybrid sampling strategy which takes asymmetric properties explicitly into account, achieving fast convergence times and high scalability for asymmetric open systems.
We highlight the universal applicability of artificial neural networks, underlining the universal applicability of neural networks.
arXiv Detail & Related papers (2020-12-20T18:25:29Z) - Learning the ground state of a non-stoquastic quantum Hamiltonian in a
rugged neural network landscape [0.0]
We investigate a class of universal variational wave-functions based on artificial neural networks.
In particular, we show that in the present setup the neural network expressivity and Monte Carlo sampling are not primary limiting factors.
arXiv Detail & Related papers (2020-11-23T05:25:47Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.