Global Convergence of Continual Learning on Non-IID Data
- URL: http://arxiv.org/abs/2503.18511v1
- Date: Mon, 24 Mar 2025 10:06:07 GMT
- Title: Global Convergence of Continual Learning on Non-IID Data
- Authors: Fei Zhu, Yujing Liu, Wenzhuo Liu, Zhaoxiang Zhang,
- Abstract summary: We provide a general and comprehensive theoretical analysis for continual learning of regression models.<n>We establish the almost sure convergence results of continual learning under a general data condition for the first time.
- Score: 51.99584235667152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning, which aims to learn multiple tasks sequentially, has gained extensive attention. However, most existing work focuses on empirical studies, and the theoretical aspect remains under-explored. Recently, a few investigations have considered the theory of continual learning only for linear regressions, establishes the results based on the strict independent and identically distributed (i.i.d.) assumption and the persistent excitation on the feature data that may be difficult to verify or guarantee in practice. To overcome this fundamental limitation, in this paper, we provide a general and comprehensive theoretical analysis for continual learning of regression models. By utilizing the stochastic Lyapunov function and martingale estimation techniques, we establish the almost sure convergence results of continual learning under a general data condition for the first time. Additionally, without any excitation condition imposed on the data, the convergence rates for the forgetting and regret metrics are provided.
Related papers
- Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation [12.459901557580052]
We present SURE, a novel framework that extends the capabilities of pretrained multimodal models by introducing latent space reconstruction and uncertainty estimation.
We show that SURE consistently achieves state-of-the-art performance, ensuring robust predictions even in the presence of incomplete data.
arXiv Detail & Related papers (2025-04-18T05:07:20Z) - In-Context Linear Regression Demystified: Training Dynamics and Mechanistic Interpretability of Multi-Head Softmax Attention [52.159541540613915]
We study how multi-head softmax attention models are trained to perform in-context learning on linear data.<n>Our results reveal that in-context learning ability emerges from the trained transformer as an aggregated effect of its architecture and the underlying data distribution.
arXiv Detail & Related papers (2025-03-17T02:00:49Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.<n>Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)<n>Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Achieving Upper Bound Accuracy of Joint Training in Continual Learning [6.888316949368156]
Key challenge is catastrophic forgetting (CF), and most research efforts have been directed toward mitigating this issue.<n>A significant gap remains between the accuracy achieved by state-of-the-art continual learning algorithms and the ideal or upper-bound accuracy achieved by training all tasks together jointly.<n>This paper surveys the main research leading to this achievement, justifies the approach both intuitively and from neuroscience research, and discusses insights gained.
arXiv Detail & Related papers (2025-02-17T23:54:43Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Understanding Forgetting in Continual Learning with Linear Regression [21.8755265936716]
Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently.
We provide a general theoretical analysis of forgetting in the linear regression model via Gradient Descent.
We demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting.
arXiv Detail & Related papers (2024-05-27T18:33:37Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - A Comprehensive Survey of Continual Learning: Theory, Method and
Application [64.23253420555989]
We present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications.
We summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency.
arXiv Detail & Related papers (2023-01-31T11:34:56Z) - Steady State Analysis of Episodic Reinforcement Learning [0.0]
This paper proves that the episodic learning environment of every finite-horizon decision task has a unique steady state under any behavior policy.
The marginal distribution of the agent's input indeed converges to the steady-state distribution in essentially all episodic learning processes.
arXiv Detail & Related papers (2020-11-12T19:34:59Z) - Optimization and Generalization of Regularization-Based Continual
Learning: a Loss Approximation Viewpoint [35.5156045701898]
We provide a novel viewpoint of regularization-based continual learning by formulating it as a second-order Taylor approximation of the loss function of each task.
Based on this viewpoint, we study the optimization aspects (i.e., convergence) as well as generalization properties (i.e., finite-sample guarantees) of regularization-based continual learning.
arXiv Detail & Related papers (2020-06-19T06:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.