RAGSys: Item-Cold-Start Recommender as RAG System
- URL: http://arxiv.org/abs/2405.17587v2
- Date: Thu, 15 Aug 2024 22:28:55 GMT
- Title: RAGSys: Item-Cold-Start Recommender as RAG System
- Authors: Emile Contal, Garrin McGoldrick,
- Abstract summary: Large Language Models (LLM) hold immense promise for real-world applications, but their generic knowledge often falls short of domain-specific needs.
In-Context Learning (ICL) offers an alternative, which can leverage Retrieval-Augmented Generation (RAG) to provide LLMs with relevant demonstrations for few-shot learning tasks.
We argue that ICL retrieval in this context resembles item-cold-start recommender systems, prioritizing discovery and maximizing information gain over strict relevance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLM) hold immense promise for real-world applications, but their generic knowledge often falls short of domain-specific needs. Fine-tuning, a common approach, can suffer from catastrophic forgetting and hinder generalizability. In-Context Learning (ICL) offers an alternative, which can leverage Retrieval-Augmented Generation (RAG) to provide LLMs with relevant demonstrations for few-shot learning tasks. This paper explores the desired qualities of a demonstration retrieval system for ICL. We argue that ICL retrieval in this context resembles item-cold-start recommender systems, prioritizing discovery and maximizing information gain over strict relevance. We propose a novel evaluation method that measures the LLM's subsequent performance on NLP tasks, eliminating the need for subjective diversity scores. Our findings demonstrate the critical role of diversity and quality bias in retrieved demonstrations for effective ICL, and highlight the potential of recommender system techniques in this domain.
Related papers
- A Comprehensive Review on Harnessing Large Language Models to Overcome Recommender System Challenges [5.436611859202691]
Large Language Models (LLMs) can be leveraged to tackle key challenges in recommender systems.<n>LLMs enhance personalization, semantic alignment, and interpretability without requiring extensive task-specific supervision.<n>LLMs enable zero- and few-shot reasoning, allowing systems to operate effectively in cold-start and long-tail scenarios.
arXiv Detail & Related papers (2025-07-17T06:03:57Z) - RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning [22.495874056980824]
We propose Representation learning and textbfReasoning empowered retrieval-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+).
arXiv Detail & Related papers (2025-03-26T11:03:34Z) - Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems) is a training-free framework that combines graph retrieval-augmented generation and in-context learning.
G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
arXiv Detail & Related papers (2025-03-09T03:56:22Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation [15.972926854420619]
Leveraging large language models (LLMs) offers new opportunities for comprehensive recommendation logic generation.
Fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems.
In this work, our proposed effective strategy LANE aligns LLMs with online recommendation systems without additional LLMs tuning.
arXiv Detail & Related papers (2024-07-03T06:20:31Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
The paper underscores the significance of Large Language Models in reshaping recommender systems.
LLMs exhibit exceptional proficiency in recommending items, showcasing their adeptness in comprehending intricacies of language.
Despite their transformative potential, challenges persist, including sensitivity to input prompts, occasional misinterpretations, and unforeseen recommendations.
arXiv Detail & Related papers (2024-02-11T00:24:17Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
Large language models (LLMs) offer novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems.
Our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs's involvement in recommender systems.
arXiv Detail & Related papers (2023-12-21T03:50:09Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
This paper proposes an AI-enabled methodological framework that combines the power of Large Language Models (LLMs) with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability.
arXiv Detail & Related papers (2023-06-15T02:52:50Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.