論文の概要: Sports-Traj: A Unified Trajectory Generation Model for Multi-Agent Movement in Sports
- arxiv url: http://arxiv.org/abs/2405.17680v2
- Date: Wed, 26 Feb 2025 23:35:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 15:15:45.619931
- Title: Sports-Traj: A Unified Trajectory Generation Model for Multi-Agent Movement in Sports
- Title(参考訳): スポーツトレージュ:スポーツにおける多エージェント運動のための統一軌道生成モデル
- Authors: Yi Xu, Yun Fu,
- Abstract要約: 任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを紹介する。
バスケットボールU,サッカーU,サッカーUの3つの実践的スポーツデータセットをベンチマークして評価を行った。
- 参考スコア(独自算出の注目度): 53.637837706712794
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding multi-agent movement is critical across various fields. The conventional approaches typically focus on separate tasks such as trajectory prediction, imputation, or spatial-temporal recovery. Considering the unique formulation and constraint of each task, most existing methods are tailored for only one, limiting the ability to handle multiple tasks simultaneously, which is a common requirement in real-world scenarios. Another limitation is that widely used public datasets mainly focus on pedestrian movements with casual, loosely connected patterns, where interactions between individuals are not always present, especially at a long distance, making them less representative of more structured environments. To overcome these limitations, we propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs, adaptable to diverse scenarios in the domain of sports games. Specifically, we introduce a Ghost Spatial Masking (GSM) module, embedded within a Transformer encoder, for spatial feature extraction. We further extend recent State Space Models (SSMs), known as the Mamba model, into a Bidirectional Temporal Mamba (BTM) to better capture temporal dependencies. Additionally, we incorporate a Bidirectional Temporal Scaled (BTS) module to thoroughly scan trajectories while preserving temporal missing relationships. Furthermore, we curate and benchmark three practical sports datasets, Basketball-U, Football-U, and Soccer-U, for evaluation. Extensive experiments demonstrate the superior performance of our model. We hope that our work can advance the understanding of human movement in real-world applications, particularly in sports. Our datasets, code, and model weights are available here https://github.com/colorfulfuture/UniTraj-pytorch.
- Abstract(参考訳): マルチエージェント運動を理解することは様々な分野において重要である。
従来の手法は典型的には、軌跡予測、抑止、空間的時間的回復といった別のタスクに重点を置いている。
各タスクのユニークな定式化と制約を考慮すると、既存のほとんどのメソッドは1つに調整されており、複数のタスクを同時に処理する能力を制限する。
もう一つの制限は、広く使われている公共データセットは、主にカジュアルでゆるやかに結びついたパターンを持つ歩行者の動きに焦点を当てている。
これらの制約を克服するために,スポーツゲーム分野における多様なシナリオに対応可能な任意の軌道をマスク入力として処理するUniTrajモデルを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを紹介する。
我々はさらに、最近のステートスペースモデル(SSM)、いわゆるマンバモデルを双方向テンポラルマンバ(BTM)に拡張し、時間的依存をよりよく捉える。
さらに、双方向時間スケール(BTS)モジュールを組み込んで、時間的欠落関係を保ちながら、軌道を徹底的にスキャンする。
さらに,バスケットボール-U,サッカー-U,サッカー-Uの3つの実践的スポーツデータセットを評価し,評価を行った。
大規模な実験は、我々のモデルの優れた性能を示す。
私たちは、現実世界、特にスポーツにおける人間の動きの理解を深められることを願っています。
データセット、コード、モデルウェイトについては、https://github.com/colorfulfuture/UniTraj-pytorch.comで公開しています。
関連論文リスト
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
本稿では,時間的モデリングのためのトランスフォーマーベースの統合フレームワークであるbfUnistageを紹介する。
我々の研究は、タスク固有の視覚テキストが時間学習のための一般化可能なモデルを構築することができることを示した。
また、時間的ダイナミクスを明示的に組み込むための時間的モジュールも導入する。
論文 参考訳(メタデータ) (2025-03-26T17:33:23Z) - TacticExpert: Spatial-Temporal Graph Language Model for Basketball Tactics [0.0]
バスケットボールの戦術モデリングは、歴史的データから複雑な空間的依存関係を効率的に抽出する必要がある。
既存の最先端(SOTA)モデルは、主にグラフニューラルネットワーク(GNN)に基づいており、長期的な、長距離、きめ細かい相互作用を捉えるのに苦労している。
論文 参考訳(メタデータ) (2025-03-13T08:27:24Z) - Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - TranSPORTmer: A Holistic Approach to Trajectory Understanding in Multi-Agent Sports [28.32714256545306]
TranSportmerは、これらすべてのタスクに対処できる統合トランスフォーマーベースのフレームワークである。
時間的ダイナミクスと社会的相互作用を同変的に効果的に捉える。
プレイヤー予測、プレイヤー予測・インプット、ボール推論、ボールインプットにおいて、最先端のタスク固有モデルより優れている。
論文 参考訳(メタデータ) (2024-10-23T11:35:44Z) - TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models [0.0]
時間指向変換器を状態空間モデル(SSM)に置き換えることを提案する。
我々は、拡張表現を実現するために、SSM、グラフニューラルネットワーク、ノード指向変換器を統合するモデルを開発する。
論文 参考訳(メタデータ) (2024-10-08T11:10:06Z) - MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model [18.607106274732885]
我々は、MTP(Mamba moTion Predictor)という、マンバをベースとしたモーションモデルを導入する。
MTPは、物体の時空間的位置ダイナミクスを入力として、バイマンバ符号化層を用いて動きパターンをキャプチャし、次の動きを予測する。
提案するトラッカーであるMambaTrackは、DancetrackやSportsMOTなどのベンチマークで高度なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-17T11:58:47Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet [24.852728097115744]
RGBからの多人数ポーズ理解には、ポーズ推定、トラッキング、動き予測という3つの複雑なタスクが含まれる。
既存の作業の多くは、ひとつのタスクに集中するか、複数のタスクを別々に解決するためのマルチステージアプローチを採用するかのどちらかです。
Snipperは、複数の人物によるポーズ推定、追跡、動き予測を同時に行うための統合されたフレームワークである。
論文 参考訳(メタデータ) (2022-07-09T18:42:14Z) - Learning Behavior Representations Through Multi-Timescale Bootstrapping [8.543808476554695]
本稿では,行動のマルチスケール表現学習モデルであるBootstrap Across Multiple Scales (BAMS)を紹介する。
まず,異なる地形タイプをナビゲートする四足歩行のデータセットに本手法を適用し,そのモデルが行動の時間的複雑さを捉えていることを示す。
論文 参考訳(メタデータ) (2022-06-14T17:57:55Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose
Estimation [78.83305967085413]
本稿では,2次元から3次元のポーズ推定作業のためのP-STMOモデルを提案する。
提案手法は,パラメータが少なく,計算オーバーヘッドが少なく,最先端の手法より優れている。
論文 参考訳(メタデータ) (2022-03-15T04:00:59Z) - baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal
Modeling [17.352818121007576]
マルチエージェント・テンポラリ・モデリングは,アルゴリズム設計の観点からも,計算の観点からも難しい課題である。
本稿では,標準トランスフォーマーの多元性一般化である Baller2vec について紹介する。
バスケットボールに関連する2つのタスクを訓練し,マルチエージェント・テンポラル・モデリングにおける Baller2vec の有効性を検証した。
論文 参考訳(メタデータ) (2021-02-05T17:02:04Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。