論文の概要: Color Shift Estimation-and-Correction for Image Enhancement
- arxiv url: http://arxiv.org/abs/2405.17725v1
- Date: Tue, 28 May 2024 00:45:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 22:51:42.255424
- Title: Color Shift Estimation-and-Correction for Image Enhancement
- Title(参考訳): 画像強調のためのカラーシフト推定と補正
- Authors: Yiyu Li, Ke Xu, Gerhard Petrus Hancke, Rynson W. H. Lau,
- Abstract要約: 準最適照明条件下で撮影された画像は、オーバー露光とアンダー露光の両方を含む可能性がある。
現在のアプローチは主に画像の明るさの調整に重点を置いており、これは未露光領域における色調歪みを悪化させる可能性がある。
そこで本研究では,これらの色変化を推定・補正する学習によって,過度露光と過度露光の両方で画像を強化する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 37.52492067462557
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Images captured under sub-optimal illumination conditions may contain both over- and under-exposures. Current approaches mainly focus on adjusting image brightness, which may exacerbate the color tone distortion in under-exposed areas and fail to restore accurate colors in over-exposed regions. We observe that under-exposed and over-exposed regions display opposite color tone distribution shifts with respect to each other, which may not be easily normalized in joint modeling as they usually do not have ``normal-exposed'' regions/pixels as reference. In this paper, we propose a novel method to enhance images with both over- and under-exposures by learning to estimate and correct such color shifts. Specifically, we first derive the color feature maps of the brightened and darkened versions of the input image via a UNet-based network, followed by a pseudo-normal feature generator to produce pseudo-normal color feature maps. We then propose a novel COlor Shift Estimation (COSE) module to estimate the color shifts between the derived brightened (or darkened) color feature maps and the pseudo-normal color feature maps. The COSE module corrects the estimated color shifts of the over- and under-exposed regions separately. We further propose a novel COlor MOdulation (COMO) module to modulate the separately corrected colors in the over- and under-exposed regions to produce the enhanced image. Comprehensive experiments show that our method outperforms existing approaches. Project webpage: https://github.com/yiyulics/CSEC.
- Abstract(参考訳): 準最適照明条件下で撮影された画像は、オーバー露光とアンダー露光の両方を含む可能性がある。
現在のアプローチは主に画像の明るさの調整に重点を置いており、露光の少ない領域では色調の歪みが悪化し、露光の過度な領域では正確な色を復元できない。
本研究は,非正規化領域と過剰発現領域が相互に異なる色調分布変化を示すことを観察し,通常「正規化」領域/ピクセルを参照として持たないため,共同モデリングでは正規化が困難であることを示す。
本稿では,これらの色変化を推定・補正する学習により,オーバー露光とアンダー露光の両方で画像を強化する新しい手法を提案する。
具体的には、まず、UNetベースのネットワークを介して、入力画像の鮮明化および暗化バージョンの色特徴マップを導出し、続いて擬似正規色特徴マップを生成する擬似正規色特徴生成器を作成した。
次に,得られた色特徴写像と擬似正規色特徴写像との間の色変化を推定する新しいCOSEモジュールを提案する。
COSEモジュールは、オーバー露光領域とアンダー露光領域の推定色変化を別々に補正する。
さらに,強調画像を生成するために,オーバー露光領域とアンダー露光領域の分離補正色を変調する新しいコラー変調 (COMO) モジュールを提案する。
総合実験により,本手法が既存手法より優れていることが示された。
プロジェクトWebページ: https://github.com/yiyulics/CSEC
関連論文リスト
- A Nerf-Based Color Consistency Method for Remote Sensing Images [0.5735035463793009]
暗黙の表現を用いて画像特徴を一緒に織り込み、次に特徴空間を再照らし、新しい視点で融合画像を生成する、多視点画像のためのNeRFに基づく色整合法を提案する。
実験結果から,本手法により生成した合成画像は,エッジにおける視覚効果とスムーズな色遷移に優れることがわかった。
論文 参考訳(メタデータ) (2024-11-08T13:26:07Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - ITRE: Low-light Image Enhancement Based on Illumination Transmission
Ratio Estimation [10.26197196078661]
ノイズ、アーティファクト、過剰露光は、低照度画像強調の分野において重要な課題である。
モデルの起源からノイズやアーティファクトを抑圧するRetinexベースの新しい手法ITREを提案する。
広汎な実験により, 騒音抑制, アーティファクト防止, 露光量の同時制御におけるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-10-08T13:22:20Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
ドメインギャップは、異なるフォアグラウンド(核)-バックグラウンド比によっても引き起こされる可能性があると我々は主張する。
まず、異なる領域間の劇的な画像色変化を緩和する再カラー化手法を提案する。
次に,前景-背景比の変動に頑健な新しいインスタンス正規化手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T01:01:13Z) - Dequantization and Color Transfer with Diffusion Models [5.228564799458042]
量子化されたイメージは、パッチベースの編集とパレット転送を簡単に抽象化する。
提案モデルでは,ユーザが求めているカラーパレットを尊重する自然な画像を生成できることが示される。
本手法は,画像のテクスチャを尊重しながら,画像のパッチを塗り替えることによって,別の実用的な編集に拡張することができる。
論文 参考訳(メタデータ) (2023-07-06T00:07:32Z) - Low-light Image Enhancement via Breaking Down the Darkness [8.707025631892202]
本稿では,分割・ルール原理に触発された新しい枠組みを提案する。
本稿では,RGB空間から輝度クロミナンス画像に変換することを提案する。
調整可能なノイズ抑制ネットワークは、輝度が明るくなるときにノイズを取り除くように設計されている。
強化された輝度はさらに、色マッパーが現実的な色を生成するためのガイダンスとなる。
論文 参考訳(メタデータ) (2021-11-30T16:50:59Z) - Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with
Conditional StyleGAN [88.62422914645066]
任意のポーズで1つの画像から人物を再レンダリングするアルゴリズムを提案する。
既存の方法では、画像の同一性や細部を保ちながら、隠蔽されたコンテンツを写実的に幻覚することはしばしば困難である。
本手法は, 定量的評価と視覚的比較の両方において, 最先端のアルゴリズムと良好に比較できることを示す。
論文 参考訳(メタデータ) (2021-09-13T17:59:33Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
本稿では,この一対多の関係を正規化フローモデルを用いてモデル化する。
低照度画像/特徴を条件として取り、通常露光される画像の分布をガウス分布にマッピングすることを学ぶ可逆ネットワーク。
既存のベンチマークデータセットによる実験結果から,提案手法はより定量的,質的な結果を得ることができ,照度が良く,ノイズやアーティファクトが小さく,色も豊かになることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:45:08Z) - Guided Colorization Using Mono-Color Image Pairs [6.729108277517129]
モノクロ画像は通常、より優れた信号対雑音比(SNR)とよりリッチなテクスチャを持つ。
モノクロ画像とカラー画像とをカラー化するモノクロ画像強調アルゴリズムを提案する。
実験結果から,本アルゴリズムはより高精細度で高精細度な色画像をモノカラー画像対から効率よく復元できることが示唆された。
論文 参考訳(メタデータ) (2021-08-17T07:00:28Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。