論文の概要: The Binary Quantized Neural Network for Dense Prediction via Specially Designed Upsampling and Attention
- arxiv url: http://arxiv.org/abs/2405.17776v1
- Date: Tue, 28 May 2024 03:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 22:32:09.517432
- Title: The Binary Quantized Neural Network for Dense Prediction via Specially Designed Upsampling and Attention
- Title(参考訳): 特別設計型アップサンプリング・アテンションによる二元量子ニューラルネットワークによる密度予測
- Authors: Xingyu Ding, Lianlei Shan, Guiqin Zhao, Meiqi Wu, Wenzhang Zhou, Wei Li,
- Abstract要約: 単一予測タスクから高密度予測タスクへバイナリニューラルネットワーク(BNN)の成功を伝達するための効果的なアップサンプリング手法と効率的な注意計算手法を提案する。
我々の注意法は計算の複雑さを100倍に削減できるが、元の効果は維持できる。
- 参考スコア(独自算出の注目度): 6.659719111319061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based information processing consumes long time and requires huge computing resources, especially for dense prediction tasks which require an output for each pixel, like semantic segmentation and salient object detection. There are mainly two challenges for quantization of dense prediction tasks. Firstly, directly applying the upsampling operation that dense prediction tasks require is extremely crude and causes unacceptable accuracy reduction. Secondly, the complex structure of dense prediction networks means it is difficult to maintain a fast speed as well as a high accuracy when performing quantization. In this paper, we propose an effective upsampling method and an efficient attention computation strategy to transfer the success of the binary neural networks (BNN) from single prediction tasks to dense prediction tasks. Firstly, we design a simple and robust multi-branch parallel upsampling structure to achieve the high accuracy. Then we further optimize the attention method which plays an important role in segmentation but has huge computation complexity. Our attention method can reduce the computational complexity by a factor of one hundred times but retain the original effect. Experiments on Cityscapes, KITTI road, and ECSSD fully show the effectiveness of our work.
- Abstract(参考訳): ディープラーニングベースの情報処理は、長い時間を費やし、特にセマンティックセグメンテーションや有能なオブジェクト検出など、各ピクセルの出力を必要とする高密度な予測タスクのために、巨大なコンピューティングリソースを必要とする。
密度予測タスクの定量化には,主に2つの課題がある。
第一に、高密度予測タスクが必要とするアップサンプリング操作を直接適用することは極めて粗末であり、許容できない精度の低下を引き起こす。
第二に、密度予測ネットワークの複雑な構造は、量子化を行う際に高速かつ高精度を維持することが困難であることを意味する。
本稿では、単一予測タスクから高密度予測タスクへバイナリニューラルネットワーク(BNN)の成功を伝達するための効果的なアップサンプリング手法と効率的な注意計算戦略を提案する。
まず, 単純で頑健なマルチブランチ並列アップサンプリング構造を設計し, 高い精度を実現する。
さらに,セグメンテーションにおいて重要な役割を果たすが,計算の複雑さが大きい注意法を最適化する。
我々の注意法は計算の複雑さを100倍に削減できるが、元の効果は維持できる。
Cityscapes、KITTI Road、ECSSDの実験は、我々の作業の有効性を十分に示している。
関連論文リスト
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDenseは、効率よく正確な密度予測タスクのために設計された一般化されたバイナリニューラルネットワーク(BNN)である。
BiDenseは2つの重要なテクニックを取り入れている: 分散適応バイナリー (DAB) とチャネル適応完全精度バイパス (CFB) である。
論文 参考訳(メタデータ) (2024-11-15T16:46:04Z) - YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training [9.02251811867533]
YOSO(You-Only-Sample-Once)は、予測精度を維持しながら効率的なトレーニングを実現するアルゴリズムである。
YOSOは、正規直交基底計算のような従来の圧縮センシング(CS)法で高価な計算を避けるだけでなく、高い確率精度の保持も保証している。
論文 参考訳(メタデータ) (2024-11-08T16:47:51Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
混合精度量子化は、ハードウェアの多重ビット幅演算を利用して、ネットワーク量子化の全ポテンシャルを解き放つ。
本稿では、整数プログラミングの損失と高い相関関係にあるネットワーク性の概念であるプロキシメトリックを最適化することを提案する。
このアプローチは、量子化精度にほとんど妥協することなく、検索時間と必要なデータ量を桁違いに削減する。
論文 参考訳(メタデータ) (2021-09-16T10:59:33Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
EQ-Netは,データ駆動手法を用いてログ類似度(LLR)推定と量子化の両課題を解決する,最初の包括的フレームワークである。
広範な実験評価を行い,両タスクにおいて単一アーキテクチャが最先端の成果を達成できることを実証する。
論文 参考訳(メタデータ) (2020-12-23T18:11:30Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
本研究では,FADNetという分散度推定のための効率的かつ高精度なディープネットワークを提案する。
高速な計算を保存するために、2Dベースの効率的な相関層と積み重ねブロックを利用する。
精度を向上させるために、マルチスケールの重みスケジューリングトレーニング技術を活用するために、マルチスケールの予測を含んでいる。
論文 参考訳(メタデータ) (2020-03-24T10:27:11Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。