An Information Theoretic Evaluation Metric For Strong Unlearning
- URL: http://arxiv.org/abs/2405.17878v2
- Date: Sat, 19 Oct 2024 06:00:20 GMT
- Title: An Information Theoretic Evaluation Metric For Strong Unlearning
- Authors: Dongjae Jeon, Wonje Jeung, Taeheon Kim, Albert No, Jonghyun Choi,
- Abstract summary: We introduce the Information Difference Index (IDI), a novel white-box metric inspired by information theory.
IDI quantifies retained information in intermediate features by measuring mutual information between those features and the labels to be forgotten.
Our experiments demonstrate that IDI effectively measures the degree of unlearning across various datasets and architectures.
- Score: 20.143627174765985
- License:
- Abstract: Machine unlearning (MU) aims to remove the influence of specific data from trained models, addressing privacy concerns and ensuring compliance with regulations such as the "right to be forgotten." Evaluating strong unlearning, where the unlearned model is indistinguishable from one retrained without the forgetting data, remains a significant challenge in deep neural networks (DNNs). Common black-box metrics, such as variants of membership inference attacks and accuracy comparisons, primarily assess model outputs but often fail to capture residual information in intermediate layers. To bridge this gap, we introduce the Information Difference Index (IDI), a novel white-box metric inspired by information theory. IDI quantifies retained information in intermediate features by measuring mutual information between those features and the labels to be forgotten, offering a more comprehensive assessment of unlearning efficacy. Our experiments demonstrate that IDI effectively measures the degree of unlearning across various datasets and architectures, providing a reliable tool for evaluating strong unlearning in DNNs.
Related papers
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
This paper investigates fundamental bounds on information leakage.
We identify and bound the success rate of the worst-case membership inference attack.
We derive bounds on the mutual information between the sensitive attributes and model parameters.
arXiv Detail & Related papers (2021-05-09T08:49:14Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Grasping Detection Network with Uncertainty Estimation for
Confidence-Driven Semi-Supervised Domain Adaptation [17.16216430459064]
This paper presents an approach enabling the easy domain adaptation through a novel grasping detection network with confidence-driven semi-supervised learning.
The proposed grasping detection network specially provides a prediction uncertainty estimation mechanism by leveraging on Feature Pyramid Network (FPN), and the mean-teacher semi-supervised learning utilizes such uncertainty information to emphasizing the consistency loss only for those unlabelled data with high confidence.
Our results show that the proposed network can achieve high success rate on the Cornell grasping dataset, and for domain adaptation with very limited data, the confidence-driven mean teacher outperforms the original mean teacher and direct training by more than 10% in evaluation
arXiv Detail & Related papers (2020-08-20T07:42:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.