論文の概要: Towards Clinical AI Fairness: Filling Gaps in the Puzzle
- arxiv url: http://arxiv.org/abs/2405.17921v1
- Date: Tue, 28 May 2024 07:42:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:47:39.172393
- Title: Towards Clinical AI Fairness: Filling Gaps in the Puzzle
- Title(参考訳): クリニカルAIフェアネスに向けて:パズルにギャップを埋める
- Authors: Mingxuan Liu, Yilin Ning, Salinelat Teixayavong, Xiaoxuan Liu, Mayli Mertens, Yuqing Shang, Xin Li, Di Miao, Jie Xu, Daniel Shu Wei Ting, Lionel Tim-Ee Cheng, Jasmine Chiat Ling Ong, Zhen Ling Teo, Ting Fang Tan, Narrendar RaviChandran, Fei Wang, Leo Anthony Celi, Marcus Eng Hock Ong, Nan Liu,
- Abstract要約: このレビューでは、医療データと提供されたAIフェアネスソリューションの両方に関して、いくつかの欠陥を体系的に指摘する。
AI技術がますます活用されている多くの医療分野において、AIフェアネスの研究の欠如を強調している。
これらのギャップを埋めるために、我々のレビューは医療研究コミュニティとAI研究コミュニティの両方にとって実行可能な戦略を前進させます。
- 参考スコア(独自算出の注目度): 15.543248260582217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ethical integration of Artificial Intelligence (AI) in healthcare necessitates addressing fairness-a concept that is highly context-specific across medical fields. Extensive studies have been conducted to expand the technical components of AI fairness, while tremendous calls for AI fairness have been raised from healthcare. Despite this, a significant disconnect persists between technical advancements and their practical clinical applications, resulting in a lack of contextualized discussion of AI fairness in clinical settings. Through a detailed evidence gap analysis, our review systematically pinpoints several deficiencies concerning both healthcare data and the provided AI fairness solutions. We highlight the scarcity of research on AI fairness in many medical domains where AI technology is increasingly utilized. Additionally, our analysis highlights a substantial reliance on group fairness, aiming to ensure equality among demographic groups from a macro healthcare system perspective; in contrast, individual fairness, focusing on equity at a more granular level, is frequently overlooked. To bridge these gaps, our review advances actionable strategies for both the healthcare and AI research communities. Beyond applying existing AI fairness methods in healthcare, we further emphasize the importance of involving healthcare professionals to refine AI fairness concepts and methods to ensure contextually relevant and ethically sound AI applications in healthcare.
- Abstract(参考訳): 医療における人工知能(AI)の倫理的統合は、医療分野にまたがってコンテキスト固有の概念であるフェアネスに対処する必要がある。
AIフェアネスの技術的コンポーネントを拡張するために、広範囲にわたる研究が実施されている一方、AIフェアネスを求める声は、医療から大きく上がっている。
それにもかかわらず、技術的進歩と実践的臨床応用の間には重大な断絶が続き、臨床環境におけるAIフェアネスに関する文脈的議論が欠如している。
詳細なエビデンスギャップ分析を通じて、我々のレビューは、医療データと提供されたAIフェアネスソリューションの両方に関して、いくつかの欠陥を系統的に指摘する。
AI技術がますます活用されている多くの医療分野において、AIフェアネスの研究の欠如を強調している。
さらに、マクロ医療システムの観点から、人口集団間の平等を確保することを目的として、グループフェアネスにかなり依存していることを強調し、対照的に、より粒度の細かいエクイティに焦点をあてた個人フェアネスは、しばしば見過ごされる。
これらのギャップを埋めるために、我々のレビューは医療研究コミュニティとAI研究コミュニティの両方にとって実行可能な戦略を前進させます。
医療に既存のAIフェアネスメソッドを適用すること以外にも、医療専門家がAIフェアネスの概念と手法を洗練させ、医療におけるAIアプリケーションに文脈的に関連があり倫理的に健全であるようにすることの重要性をさらに強調する。
関連論文リスト
- AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - Fair by design: A sociotechnical approach to justifying the fairness of AI-enabled systems across the lifecycle [0.8164978442203773]
公正性は、既存のAIガイドラインにおいて最もよく認識される倫理的原則の1つである。
公正なAI対応システムの開発は、新たなAI規制によって要求される。
論文 参考訳(メタデータ) (2024-06-13T12:03:29Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Towards clinical AI fairness: A translational perspective [13.061383127966872]
本稿では,AIフェアネスの技術的視点と臨床的視点の相違について論じる。
知識ギャップを埋め、可能な解決策を提供するために、多分野の協力を提唱する。
論文 参考訳(メタデータ) (2023-04-26T12:38:40Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AIベースのコンピュータ支援診断と治療ツールは、臨床レベルを合わせるか、あるいは臨床専門家を上回ることで、医療を民主化することができる。
このようなAIツールの民主化は、ケアコストを削減し、リソース割り当てを最適化し、ケアの質を向上させる。
AIをヘルスケアに統合することは、バイアス、透明性、自律性、責任、説明責任など、いくつかの倫理的および哲学的な懸念を提起する。
論文 参考訳(メタデータ) (2023-04-23T04:14:18Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Algorithm Fairness in AI for Medicine and Healthcare [4.626801344708786]
アルゴリズムの公平性は 公平なケアを提供する上で 難しい問題です
人種のサブ人口にまたがるAIモデルの最近の評価では、患者の診断、治療、医療費の請求などにおいて、大きな不平等が明らかになっている。
論文 参考訳(メタデータ) (2021-10-01T18:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。