論文の概要: Tool Learning with Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2405.17935v1
- Date: Tue, 28 May 2024 08:01:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:37:52.935940
- Title: Tool Learning with Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルによるツール学習: 調査
- Authors: Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, Ji-Rong Wen,
- Abstract要約: 大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
- 参考スコア(独自算出の注目度): 60.733557487886635
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the "why" by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of "how", we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) を用いたツール学習が,高度に複雑な問題に対処するLLMの能力向上のための有望なパラダイムとして出現している。
この分野での注目と急速な進歩にもかかわらず、既存の文献は断片化され、体系的な組織が欠如しており、新参者にとって障壁となっている。
このギャップは、LLMによるツール学習に関する既存の研究を包括的に調査する動機となります。
本研究では,ツール学習が有益である理由と,ツール学習の実施方法に焦点をあて,LLMによるツール学習の包括的理解を可能にした。
まず、ツール統合の利点と、ツール学習パラダイムの固有の利点の両方を6つの特定の側面から見直すことで、"なぜ"理由を探求します。
方法については,タスク計画,ツール選択,ツール呼び出し,応答生成という,ツール学習ワークフローにおける4つの重要な段階の分類に従って,文献を体系的にレビューする。
さらに,既存のベンチマークと評価手法の詳細な概要を示し,その関連性に応じて分類する。
最後に、現在の課題について議論し、将来的な方向性を概説し、研究者と工業開発者の両方に、この新興で有望な領域をさらに探求させることを目指している。
関連論文リスト
- LLM With Tools: A Survey [0.0]
本稿では,LCMに外部ツールの使用を教える領域における方法論,問題点,展開について述べる。
ユーザ命令を実行可能なプランにマッピングする一連の関数によってガイドされるツール統合のための標準化パラダイムを導入する。
調査の結果,ツール起動タイミング,選択精度,堅牢な推論プロセスの必要性など,さまざまな課題が明らかになった。
論文 参考訳(メタデータ) (2024-09-24T14:08:11Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of
Large Language Models in Real-world Scenarios [48.38419686697733]
本稿では,大規模言語モデルのツール学習能力を評価するためのシステムであるToolEyesを提案する。
このシステムは7つの現実シナリオを慎重に分析し、ツール学習においてLLMに不可欠な5次元を解析する。
ToolEyesには,約600のツールを備えたツールライブラリが組み込まれている。
論文 参考訳(メタデータ) (2024-01-01T12:49:36Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
本研究では,大規模言語モデル(LLM)を学習し,現実のシナリオで複雑なツールを使用するための新しいツール学習フレームワークを提案する。
まず,多段階の学習手法を提案する。
次に、イントロスペクティブフィードバックからの反復自己インストラクションを提案し、データセットを動的に構築し、複雑なツールを使用する能力を改善する。
論文 参考訳(メタデータ) (2023-08-27T07:53:00Z) - Tool Learning with Foundation Models [158.8640687353623]
基礎モデルの出現により、AIシステムは、人間としてのツールの使用に等しく適応できる可能性がある。
その大きな可能性にもかかわらず、この分野における重要な課題、機会、そして将来の取り組みに関する包括的な理解はいまだに欠けている。
論文 参考訳(メタデータ) (2023-04-17T15:16:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。