Self-supervised Pre-training for Transferable Multi-modal Perception
- URL: http://arxiv.org/abs/2405.17942v1
- Date: Tue, 28 May 2024 08:13:49 GMT
- Title: Self-supervised Pre-training for Transferable Multi-modal Perception
- Authors: Xiaohao Xu, Tianyi Zhang, Jinrong Yang, Matthew Johnson-Roberson, Xiaonan Huang,
- Abstract summary: NeRF-Supervised Masked Auto (NS-MAE) is a self-supervised pre-training paradigm for transferable multi-modal representation learning.
Our approach uses masked multi-modal reconstruction in neural radiance fields (NeRF), training the model to reconstruct missing or corrupted input data.
Extensive experiments demonstrate the promising transferability of NS-MAE representations across diverse multi-modal and single-modal perception models.
- Score: 15.93440465377068
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In autonomous driving, multi-modal perception models leveraging inputs from multiple sensors exhibit strong robustness in degraded environments. However, these models face challenges in efficiently and effectively transferring learned representations across different modalities and tasks. This paper presents NeRF-Supervised Masked Auto Encoder (NS-MAE), a self-supervised pre-training paradigm for transferable multi-modal representation learning. NS-MAE is designed to provide pre-trained model initializations for efficient and high-performance fine-tuning. Our approach uses masked multi-modal reconstruction in neural radiance fields (NeRF), training the model to reconstruct missing or corrupted input data across multiple modalities. Specifically, multi-modal embeddings are extracted from corrupted LiDAR point clouds and images, conditioned on specific view directions and locations. These embeddings are then rendered into projected multi-modal feature maps using neural rendering techniques. The original multi-modal signals serve as reconstruction targets for the rendered feature maps, facilitating self-supervised representation learning. Extensive experiments demonstrate the promising transferability of NS-MAE representations across diverse multi-modal and single-modal perception models. This transferability is evaluated on various 3D perception downstream tasks, such as 3D object detection and BEV map segmentation, using different amounts of fine-tuning labeled data. Our code will be released to support the community.
Related papers
- Label-Efficient LiDAR Semantic Segmentation with 2D-3D Vision Transformer Adapters [32.21090169762889]
BALViT is a novel approach that leverages frozen vision models as amodal feature encoders for learning strong LiDAR encoders.
We make the code and models publicly available at: http://balvit.cs.uni-freiburg.de.
arXiv Detail & Related papers (2025-03-05T09:30:49Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.
Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.
Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
We propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies.
We also design two Point Cloud Intensification ( PCI) strategies to compensate for the sparsity of point clouds.
We develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features.
arXiv Detail & Related papers (2024-07-14T09:39:44Z) - Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining [41.145598142457686]
LiDAR-camera 3D representation pretraining has shown significant promise for 3D perception tasks and related applications.
We propose a novel Vision-Foundation-Model-driven sample exploring module to meticulously select LiDAR-Image pairs from unexplored frames.
Our method consistently outperforms existing state-of-the-art pretraining frameworks across three major public autonomous driving datasets.
arXiv Detail & Related papers (2024-07-10T08:46:29Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Towards Transferable Multi-modal Perception Representation Learning for
Autonomy: NeRF-Supervised Masked AutoEncoder [1.90365714903665]
This work proposes a unified self-supervised pre-training framework for transferable multi-modal perception representation learning.
We show that the representation learned via NeRF-Supervised Masked AutoEncoder (NS-MAE) shows promising transferability for diverse multi-modal and single-modal (camera-only and Lidar-only) perception models.
We hope this study can inspire exploration of more general multi-modal representation learning for autonomous agents.
arXiv Detail & Related papers (2023-11-23T00:53:11Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV
Perception [32.91233926771015]
CALICO is a novel framework that applies contrastive objectives to both LiDAR and camera backbones.
Our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.
arXiv Detail & Related papers (2023-06-01T05:06:56Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
"Many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections.
We present RangeFormer, a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing.
We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-09T16:13:27Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
We present BEV-MAE, an efficient masked autoencoder pre-training framework for LiDAR-based 3D object detection in autonomous driving.
Specifically, we propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation.
We introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder.
arXiv Detail & Related papers (2022-12-12T08:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.