Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors
- URL: http://arxiv.org/abs/2405.17949v1
- Date: Tue, 28 May 2024 08:26:07 GMT
- Title: Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors
- Authors: A. Nayak, D. Rajak, B. Farkas, C. Granados, P. Stammer, J. Rivera-Dean, Th. Lamprou, K. Varju, Y. Mairesse, M. F. Ciappina, M. Lewenstein, P. Tzallas,
- Abstract summary: We photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field.
We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field.
This light source opens a new spectral window for attosecond spectroscopy.
- Score: 0.03269212833895299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonstrate that the high harmonics generated through the interaction of mid--infrared pulses with a ZnO crystal leads to the production of attosecond pulses, that can be used to trace the ultrafast ionization dynamics of alkali metals. In a cross--correlation approach, we photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field. We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field. The phase of the oscillations encodes the attosecond synchronization of the ionizing high-harmonics and is used for attosecond pulse metrology. This light source opens a new spectral window for attosecond spectroscopy, paving the way for studies of systems with low ionization potentials including neutral atoms, molecules and solids. Additionally, our results highlight the significance of the source for generating non--classical massively entangled light states in the visible--VUV spectral region.
Related papers
- Squeezed dual-comb spectroscopy [32.73124984242397]
Squeezing the distribution of quantum noise to enhance measurement precision of either the amplitude or phase quadrature of an optical field leads to significant measurement improvements with continuous wave lasers.
Interferometry with a second coherent state frequency comb yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot noise limit.
The quantum noise reduction leads to a two-fold quantum speedup in the determination of gas concentration, with impact for fast, broadband, and high SNR ratio measurements of multiple species in dynamic chemical environments.
arXiv Detail & Related papers (2024-08-29T16:36:23Z) - Attosecond Rabi Oscillations in High Harmonic Generation Resonantly Driven by Extreme Ultraviolet Laser Fields [36.37753021661126]
High-order harmonic generation driven by intense extreme ultraviolet (EUV) fields merges quantum optics and attosecond science.
We theoretically investigate ultrafast resonant dynamics during the interaction of He atoms with strong EUV pulses.
arXiv Detail & Related papers (2024-04-05T12:17:40Z) - Generation of entanglement using a short-wavelength seeded free-electron
laser [0.46060488407458705]
We investigate entanglement over ultrafast timescales in a bipartite quantum system comprising two massive particles.
Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems.
arXiv Detail & Related papers (2023-12-07T17:07:46Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Dynamic resonance fluorescence in solid-state cavity quantum
electrodynamics [4.080301105379762]
We report the direct observation and systematic investigations of dynamic resonance fluorescence spectra beyond the Mollow-triplet.
Our work facilitates the generation of a variety of exotic quantum states of light with dynamic driving of two-level systems.
arXiv Detail & Related papers (2023-05-30T06:19:17Z) - Levitated Optomechanics with Meta-Atoms [0.0]
We introduce additional control in levitated optomechanics by trapping a meta-atom supporting Mie resonances.
We show that optical levitation and center-of-mass ground-state cooling of silicon nanoparticles in vacuum is not only experimentally feasible but it offers enhanced performance.
arXiv Detail & Related papers (2022-11-15T15:50:51Z) - Continuum-electron interferometry for enhancement of photoelectron
circular dichroism and measurement of bound, free, and mixed contributions to
chiral response [39.58317527488534]
We develop photoelectron interferometry based on laser-assisted extreme ultraviolet ionization for flexible and robust control of photoelectron circular dichroism in randomly oriented chiral molecules.
A comb of XUV photons ionizes a sample of chiral molecules in the presence of a time-delayed infrared or visible laser pulse promoting interferences between components of the XUV-ionized photoelectron wave packet.
arXiv Detail & Related papers (2021-04-15T15:20:57Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.