論文の概要: A Qualitative Analysis Framework for mHealth Privacy Practices
- arxiv url: http://arxiv.org/abs/2405.17971v1
- Date: Tue, 28 May 2024 08:57:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 19:28:09.170456
- Title: A Qualitative Analysis Framework for mHealth Privacy Practices
- Title(参考訳): mHealthプライバシー実践のための質的分析フレームワーク
- Authors: Thomas Cory, Wolf Rieder, Thu-My Huynh,
- Abstract要約: 本稿では,mHealthアプリにおけるプライバシプラクティスの質的評価のための新しいフレームワークを提案する。
調査では、Androidプラットフォーム上でmHealthをリードする152のアプリを分析した。
以上の結果から,機密情報の誤用や誤用に悩まされていることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile Health (mHealth) applications have become a crucial part of health monitoring and management. However, the proliferation of these applications has also raised concerns over the privacy and security of Personally Identifiable Information and Protected Health Information. Addressing these concerns, this paper introduces a novel framework for the qualitative evaluation of privacy practices in mHealth apps, particularly focusing on the handling and transmission of sensitive user data. Our investigation encompasses an analysis of 152 leading mHealth apps on the Android platform, leveraging the proposed framework to provide a multifaceted view of their data processing activities. Despite stringent regulations like the General Data Protection Regulation in the European Union and the Health Insurance Portability and Accountability Act in the United States, our findings indicate persistent issues with negligence and misuse of sensitive user information. We uncover significant instances of health information leakage to third-party trackers and a widespread neglect of privacy-by-design and transparency principles. Our research underscores the critical need for stricter enforcement of data protection laws and sets a foundation for future efforts aimed at enhancing user privacy within the mHealth ecosystem.
- Abstract(参考訳): モバイルヘルス(mHealth)アプリケーションは、健康モニタリングと管理において重要な部分となっている。
しかし、これらのアプリケーションの普及は、個人識別可能な情報と保護された健康情報のプライバシーとセキュリティに関する懸念を引き起こしている。
これらの問題に対処するために,mHealthアプリのプライバシープラクティスの質的評価のための新しいフレームワークを提案する。
調査では,Androidプラットフォーム上でmHealthをリードする152のアプリを解析し,提案したフレームワークを活用して,データ処理アクティビティの多面的なビューを提供する。
欧州連合(EU)の一般データ保護規則や、米国の健康保険ポータビリティ・説明責任法などの厳格な規制にもかかわらず、当社の調査結果は、機密情報の無視と誤用に関する永続的な問題を示している。
我々は、サードパーティのトラッカーへの健康情報漏洩の重大な事例を明らかにし、プライバシ・バイ・デザインと透明性の原則を広く無視している。
我々の研究は、データ保護法の厳格化に対する批判的な必要性を強調し、mHealthエコシステムにおけるユーザのプライバシ向上を目的とした今後の取り組みの基礎を定めています。
関連論文リスト
- A Global Medical Data Security and Privacy Preserving Standards Identification Framework for Electronic Healthcare Consumers [2.57177976232483]
異なる国は、医療データのセキュリティとプライバシーに関する様々な基準を持っている。
本稿では,これらのルールをグローバルに標準化するための,新しい包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-04T17:22:55Z) - The Gradient of Health Data Privacy [15.417809900388262]
本稿では、健康データガバナンスに対する新たな「プライバシ・グラデーション」アプローチを紹介する。
我々の多次元概念は、データ感度、利害関係者の関係、使用目的、時間的側面などの要因を考察する。
このアプローチは、世界中の多様な医療環境において、重要なプライバシー問題にどのように対処できるかを実証する。
論文 参考訳(メタデータ) (2024-10-01T17:35:18Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement [0.0]
この研究は、プライバシを優先し、情報に基づく意思決定を促進し、プライバシ保護設計原則を支持したデジタル環境に貢献することを目的としている。
このフレームワークの目的は、特定のAndroidアプリケーションを使用する際のプライバシーリスクのレベルを体系的に評価することである。
論文 参考訳(メタデータ) (2023-10-31T18:12:19Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - A Comprehensive Picture of Factors Affecting User Willingness to Use
Mobile Health Applications [62.60524178293434]
本研究の目的は,mHealthアプリのユーザ受け入れに影響を与える要因を検討することである。
利用者のデジタルリテラシーは、個人情報を共有するオンライン習慣に続き、使用意欲に最も強い影響を与える。
居住国、年齢、民族、教育などの利用者の人口統計学的背景は、顕著な緩和効果がある。
論文 参考訳(メタデータ) (2023-05-10T08:11:21Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - On the Privacy of Mental Health Apps: An Empirical Investigation and its
Implications for Apps Development [14.113922276394588]
本稿では、メンタルヘルスアプリに組み込まれたデータのプライバシーを体系的に識別し、理解することを目的とした実証的研究を報告する。
われわれはGoogle Play Storeのトップランクのメンタルヘルスアプリ27件を分析した。
この発見は、不必要なパーミッション、セキュアでない暗号実装、ログやWebリクエストにおける個人情報や資格情報の漏洩など、重要なデータプライバシの問題を明らかにする。
論文 参考訳(メタデータ) (2022-01-22T09:23:56Z) - Security and Privacy for mHealth and uHealth Systems: a Systematic
Mapping Study [0.0]
本研究の目的は、m/uHealthシステムのセキュリティとプライバシに関する最先端技術を特定し、分類し、比較し、評価することである。
論文 参考訳(メタデータ) (2020-06-22T08:44:49Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。